Advertisement

Institutional scale operational symbiosis of photovoltaic and cogeneration energy systems

  • M. Mostofi
  • A. H. Nosrat
  • J. M. Pearce
Article

Abstract

Due to the negative environmental effects of fossil fuel combustion, there is a growing interest in both improved efficiency in energy management and a large-scale transition to renewable energy systems. Using both of these strategies, a large institutional-scale hybrid energy system is proposed here, which incorporates both solar photovoltaic energy conversion to supply renewable energy and cogeneration to improve efficiency. In this case, the photovoltaic reduces the run time for the cogeneration to meet load, particularly in peaking air conditioning times. In turn, however, the cogeneration system is used to provide power back up for the photovoltaic during the night and adverse weather conditions. To illustrate the operational symbiosis between these two technical systems, this study provides a case study of a hybrid photovoltaic and cogeration system for the Taleghani hospital in Tehran. Three design scenarios using only existing technologies for such a hybrid system are considered here:1) single cogeneration + photovoltaic, 2) double cogeneration + photovoltaic, 3) single cogeneration + photovoltaic + storage. Numerical simulations for photovoltaic and cogeneration performance both before and after incorporating improved thermal energy management and high efficiency lighting were considered. The results show that the total amount of natural gas required to provide for the hospitals needs could be lowered from the current status by 55 % for scenario 1 and 62 % for both scenarios 2 and 3, respectively. This significant improvement in natural gas consumption illustrates the potential of hybridizing solar photovoltaic systems and cogeneration systems on a large scale.

Keywords

Combined heat and power Distributed generation Hybrid energy system Photovoltaic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arghandeh, R.; Amidpoor, M; Mostofi, M., (2007). Gas engines, A strategy for cogeneration purposes in buildings. In 1st Conference of National Building Codes. Shiraz, Iran.Google Scholar
  2. Atabi, F., (2004). Renewable energy in Iran: Challenges and opportunities for sustainable development. Int. J. Environ. Sci. Tech. 1(1), 69–80 (12 pages).CrossRefGoogle Scholar
  3. Benelmir, R.; Feidt, M., (1998). Energy cogeneration systems and energy management strategy. Energ. Convers. Manag., 39(16-18), 1791–1802 (12 pages).CrossRefGoogle Scholar
  4. Derewonko, P.; Pearce, J. M., (2009). Optimizing design of household scale hybrid solar photovoltaic + combined heat and power systems for Ontario., 34th IEEE Photovoltaic Specialists Conference, 2009 34th IEEE, pp.1274-1279, 7–12 June 2009.Google Scholar
  5. Hansen, J.; Sato, M.; Pushker, K.; Beerling, D.;Masson-Delmotte, V.; Pagani, M.; Raymo, M.; Royer, D. L.; Zachos, J. C., (2008). Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J., 2, 217–231 (15 pages).CrossRefGoogle Scholar
  6. Hawken, P.; Lovins, A.; Lovins, H.L., (1999). Natural capitalism: creating the next industrial revolution. Little, Brown, and Company.Google Scholar
  7. Hennicke, P., (2004). Scenarios for a robust policy mix: the final report of the German study commission on sustainable energy supply. Energy Policy., 32, 1673–1678 (6 pages).CrossRefGoogle Scholar
  8. Hennicke, P., (2005). Long term scenarios and options for sustainable energy systems and for climate protection: A short overview. Int. J. Environ. Sci. Tech., 2(2), 181–191 (11 pages).CrossRefGoogle Scholar
  9. Hernández-Santoyo, J.; Sánchez-Cifuentes, A., (2003). Trigeneration: an alternative for energy savings. Applied Energy, 76(1-3), 219–227 (19 pages).CrossRefGoogle Scholar
  10. IEA, (2008a). Electricity information 2008, International Energy Agency, Paris, France.Google Scholar
  11. IEA, (2008b). World energy outlook 2008, International Energy Agency, Paris, France.CrossRefGoogle Scholar
  12. IEEO, (2000). Energy management on a 400 bed hospital, Iran Energy Efficiency Organization. 5–57 (53 pages).Google Scholar
  13. Igwe, J. C.; Abia, A. A.; Ibeh, C. A., (2008). Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int. J. Environ. Sci. Tech., 5(1), 83–92 (10 pages).Google Scholar
  14. IMOE, (2008). Energy balance annual report, Iranian Ministry of Energy, Division of Power and Electric Affairs, 127–223 (97 pages).Google Scholar
  15. IMOE, (2005). Iranian Calendar. Iran rural energy report, Iranian Ministry of Energy, Division of Power and Electric Affairs, 10–11 (2 pages).Google Scholar
  16. IPCC, (2007a). Climate Change 2007. Intergovernmental Panel on Climate Change, Synthesis report. Cambridge University Press, Cambridge, UK.Google Scholar
  17. IPCC, (2007b). Climate Change 2007. Intergovernmental Panel on Climate Change, Mitigation of climate change. Cambridge University Press, Cambridge, UK.Google Scholar
  18. ISIRI, (1999). Evaporative air coolers-method for measuring energy consumption, Institute of Standards and Industrial Research in Iran, Tehran, Iran.Google Scholar
  19. Jochem, E; Madlener, R.; Mannsbart, W., (2002). Renewable energy technology diffusion, prospects of the German and Swiss industry in the world markets. World Renewable Energy Congress VII, 809–815 (7 pages).Google Scholar
  20. Karapidakis, E. S.; Tsave, A. A.; Soupios, P. M.; Katsigiannis, Y. A., (2010). Energy efficiency and environmental impact of biogas utilization in landfills. Int. J. Environ. Sci. Tech., 7(3), 599–608 (10 pages).Google Scholar
  21. Kolanowski, B. F., (2003). Small scale cogeneration handbook. Marcel Dekker Inc., 82–88 (7 pages).Google Scholar
  22. Kong, X. Q.; Wu, J. Y; Huang, X. H.; Huangfu, Y; Wu, D. W.; Xu, Y. X. (2005). Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine. Inter. J. Refrig., 28(2005), 977–988 (12 pages).CrossRefGoogle Scholar
  23. Kroger, D. G., (2003). Air-cooled heat exchangers and cooling towers, PenWell Books, 1–11 (12 pages).Google Scholar
  24. Masarat, M., (2004). Iran’s energy policy: Current dilemmas and perspective for a sustainable energy policy. Int. J. Environ. Sci. Tech., 1(3), 233–245 (13 pages).CrossRefGoogle Scholar
  25. Messenger, R.A.; Ventre, J., (2004). Photovoltaic systems engineering, 2nd Ed. CRC Press, 83–84 (2 pages).Google Scholar
  26. Miri, M; Bayati, G; Zarbakhsh, M., (2003). Introduction to CHP systems, Iran Energy Efficiency Company, 6–28 (23 pages).Google Scholar
  27. Nwanya, S. C., (2005). Analysis of cogeneration powered absorption chiller systems in remote tropical areas. In FY 2005 Glass Portfolio Review, Industrial Technologies Program, Chicago, USA 14–16 September.Google Scholar
  28. Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).Google Scholar
  29. Pearce, J. (2002). Photovoltaics — A path to sustainable futures. Futures, 34(7), 663–674 (12 pages).CrossRefGoogle Scholar
  30. Pearce, J.; Russill, C., (2005). Interdisciplinary environmental education: Communicating and applying energy efficiency for sustainability. App. Environ. Educ. Commun., 4(1), 65–72 (8 pages).CrossRefGoogle Scholar
  31. Pearce, J. M., (2009a). Household-scale cogen + solar photovoltaic hybrid systems: Effects on penetration and storage for eastern Ontario. In proceedings of the 4th Annual Canadian Solar Buildings Conference. Toronto, Ontario, 25–27 June.Google Scholar
  32. Pearce, J. M. (2009b). Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic + combined heat and power systems. Energy., 34(11), 1947–1954 (8 pages).CrossRefGoogle Scholar
  33. Petchers, N., (2003). Combined heating, cooling, and power handbook. The Fairmont Press. 30–31 (2 pages).Google Scholar
  34. Pilavachi, P. A., (2000). Power generation with gas turbine systems and combined heat and power. Appl. Therm. Eng., 20(15-16), 1421–1429 (9 pages).CrossRefGoogle Scholar
  35. Pilavachi, P.A., (2002). Mini- and micro-gas turbines for combined heat and power. Appl. Therm. Eng., 22(18), 2003–2014 (12 pages).CrossRefGoogle Scholar
  36. Refaat, A. A.; El Sheltawy, S. T.; Sadek, K. U., (2008). Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int. J. Environ. Sci. Tech., 5(3), 315–322 (8 pages).Google Scholar
  37. Refaat, A.A., (2009). Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Tech., 6(4), 677–694 (18 pages).Google Scholar
  38. Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int. J. Environ. Sci. Tech., 4(1), 19–25 (7 pages).CrossRefGoogle Scholar
  39. Samimi, J., (2002). Solar flux in Iranian Cities., Iranian Solar Energy Association, 22–169 (148 pages).Google Scholar
  40. Sayigh, A. A. M., (2000). Renewable energy: the energy for the 21st century, In World Renewable Energy Congress VI. Brighton, UK 1–7 July.Google Scholar
  41. Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).Google Scholar
  42. Sims, R. E. H.; Rogner, H. H.; Gregory, K., (2003). Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energ. Policy, 31, 1315–1326 (12 pages).CrossRefGoogle Scholar
  43. Sirchis, J., (2005). Combined production of heat and power: (cogeneration). Commission of the European Communities. SUNA (201 0). History and objectives of Iran Renewable Energy Organization. Renewable Energy Organization of Iran, Ministry of Energy. Available at: http://www.suna.org.ir/home-en.html
  44. Thirakomen, K., (2001). Cogeneration and the New era of absorption chiller. ASHRAE: Thailand Chapter, 4–6 (3 pages).Google Scholar
  45. Tozer, R.; Lozano, M. A.; Valero, A., (1996). Thermoeconomics applied to an air-conditioning system with cogeneration. Building Serv. Eng. Res. Tech. 17(1), 37–42 (6 pages).CrossRefGoogle Scholar
  46. Wang, S. K., (2000). Handbook of Air Conditioning and Refrigeration. Mc-Graw Hill, 579.Google Scholar
  47. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agye, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).Google Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIslamic Azad UniversityTehranIran
  2. 2.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations