Advertisement

Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment

  • P. ArulazhaganEmail author
  • N. Vasudevan
  • I. T. Yeom
Article

Abstract

The biodegradability of polycyclic aromatic hydrocarbons such as naphthalene, fluorene, anthracene and phenanthrene by a halotolerant bacterial consortium isolated from marine environment was investigated. The polycyclic aromatic hydrocarbons degrading bacterial consortium was enriched from mixture saline water samples collected from Chennai (Port of Chennai, salt pan), India. The consortium potently degraded polycyclic aromatic hydrocarbons (> 95%) at 30g/L of sodium chloride concentration in 4 days. The consortium was able to degrade 39 to 45% of different polycyclic hydrocarbons at 60 g/L NaCl concentration. Due to increase in salinity, the percent degradation decreased. To enhance polycyclic aromatic hydrocarbons degradation, yeast extract was added as an additional substrate at 60g/L NaCl concentration. After the addition of yeast extract, the consortium degraded > 74 % of polycyclic aromatic hydrocarbons at 60 g/L NaCl concentration in 4 days. The consortium was also able to degrade PAHs at different concentrations (5, 10, 20, 50 and 100 ppm) with 30 g/L of NaCl concentration. The polycyclic aromatic hydrocarbons degrading halotolerant bacterial consortium consists of three bacterial strains, namely Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia.

Keywords

Biodegradation Polycyclic aromatic hydrocarbons Salinity Halotolerant Bacterial consortium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbozu, I. E.; Opuene, K., (2009). Occurrence and Diagenetic Evolution of Perylene in the Sediments of Oginigba Creek, Southern Nigeria. Int. J. Environ. Res., 3(1), 117–120 (4 pages).Google Scholar
  2. Atlas, R., (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev., 45(1), 180–209 (30 pages).Google Scholar
  3. Atlas, R.; Bragg J., (2009). Bioremediation of marine oil spills: When and when not-the Exxon Valdez experience. Microbial. Biotech., 2(2), 213–221 (9 pages).CrossRefGoogle Scholar
  4. Bouchez M.; Blanchet D.; Vandecasteele J. P., (1996). The microbiological fate of polycyclic aromatic hydrocarbons: Carbon and oxygen balances for bacterial degradation of model compounds. Appl. Microbiol. Biotech., 45(4), 556–561 (6 pages).CrossRefGoogle Scholar
  5. Cerniglia, C. E., (1993). Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotech., 3(2–3), 331–338 (8 pages).CrossRefGoogle Scholar
  6. Diaz, M.P.; Grigson, S. J.W.; Peppiatt, C. J.; Grant Burgess, J., (2000). Isolation and characterization of novel hydrocarbon-degrading Euryhaline consortia from crude oil and mangrove sediments. Mar. Biotech., 2(6), 522–532 (11 pages).CrossRefGoogle Scholar
  7. Fagbote, E. O.; Olanipekun, E. O., (2010). Levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment of bitumen deposit impacted area. Int. J. Environ. Sci. Tech., 7(3), 561–570 (10 pages).CrossRefGoogle Scholar
  8. Gomes, R. C. B.; Nogueira, R.; Oliveira, J. M.; Peixoto, J.; Brito, A. G., (2006). Kinetics of fluorene biodegradation by a mixed culture. Proceedings of the second IASTED International Conference Advanced Technology in the Environmental Field. 6–8 Feb., 2006, Lanzarote, Canary Island, Spain. 84–87.Google Scholar
  9. Haghighat S.; Akhavan Sepahy, A.; Mazaheri Assadi, M.; Pasdar, H., (2008). Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial enhanced oil recovery. Int. J. Environ. Sci. Tech., 5(3), 385–390 (6 pages).CrossRefGoogle Scholar
  10. Harayama S.; Kasai Y.; Hara A., (2004). Microbial communities in oil-contaminated seawater. Curr. Opin. Biotech., 15(3), 205–214 (10 pages).CrossRefGoogle Scholar
  11. Head, I. M.; Jones, D. M.; Röling, W. F. M., (2006). Marine microorganisms make a meal of oil. Nat. Rev. Microbiol., 4(3), 173–182 (10 pages).CrossRefGoogle Scholar
  12. Hughes, J. B.; Beckles, D. M.; Chandra, S. D.; Ward, C. H., (1997). Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J. Ind. Microbiol. Biotech., 18(2–3), 152–160 (9 pages).CrossRefGoogle Scholar
  13. Kang, H.; Hwang, S. Y.; Kim, Y. M.; Kim, E.; Kim, Y. S.; Kim, S. K.; Kim, S. W.; Cerniglia, C. E.; Shuttleworth, K. L.; Zylstra, G. J., (2003). Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can. J. Microbiol., 49(2), 139–144 (6 pages).CrossRefGoogle Scholar
  14. Kim, Y. H.; Freeman, J. P.; Moody, J. D.; Engesser, K. H.; Cerniglia, C. E., (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotech., 67(2), 275–285 (11 pages).CrossRefGoogle Scholar
  15. Kiyohara, H.; Nagao, K.; Yana, K., (1982). Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl. Environ. Microbiol., 43(2), 454–457 (4 pages).Google Scholar
  16. Kumar, M.; Leon, V.; Materano, A. D. S.; Llzins, Olaf, O. A., (2007). A halotolerant and thermotolerant bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent. World J. Microbiol. Biotech., 23(2), 211–220 (10 pages).CrossRefGoogle Scholar
  17. Lee, K. H.; Byeon, S. H., (2010). The biological monitoring of urinary 1hydroxypyrene by PAH exposure among smokers. Int. J. Environ. Res., 4(3), 439–442 (4 pages).Google Scholar
  18. Margesin R.; Schinner F., (2001 ). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5(2), 73–83 (11 pages).CrossRefGoogle Scholar
  19. Mohanan, S., Maruthamuthu, S., Muthukumar, N., Rajasekar, A., Palaniswamy, N., (2007). Biodegradation of Palmarosa oil (Green oil) by Serratia marcescens. Int. J. Environ. Sci. Tech., 4(2), 277–281 (5 pages).Google Scholar
  20. Moody, J. D.; Freeman, J. P.; Doerge, D. R.; Cerniglia, C. E., (2001). Degradation of phenanthrene and anthracene by cell suspensions of mycobacterium sp. Strain PYR-1. Appl. Environ. Microbiol., 67(4), 1476–1483 (8 pages).CrossRefGoogle Scholar
  21. Nicholson, C. A.; Fathepure, B. Z., (2004). Biodegradation of Benzene by Halophilic and halotolerant bacteria under aerobic conditions. Appl. Microbiol. Biotech., 70(2), 1222–1225 (4 pages).Google Scholar
  22. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).CrossRefGoogle Scholar
  23. Okafor, E. Ch., Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).Google Scholar
  24. Osuji, L. C.; Ezebuiro, P. E., (2006). Hydrocarbon contamination of a typical mangrove floor in Niger Delta, Nigeria. Int. J. Environ. Sci. Tech., 3(3), 313–320 (8 pages).CrossRefGoogle Scholar
  25. Penet, S.; Marchal, R.; Sghir, A.; Monot, F. (2004). Biodegradation of hydrocarbon cuts used for diesel oil formulation. Appl. Microbiol. Biotech., 66(1), 40–47 (8 pages).CrossRefGoogle Scholar
  26. Perugini. M.; Visciano, P.; Giammarino, A.; Manera, M.; Nardo, W. D.; Amorena M., (2007). Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea Italy. Chemosphere, 66(10), 1904–1910 (7 pages).CrossRefGoogle Scholar
  27. Pinyakong, O.; Habe, H.; Supaka, N.; Pinpanichkarn, P.; Juntongjin, K.; Yoshida, T.; Furihata, K.; Nojiri, H.; Yamane. H.; Omori, T., (2000). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol. Lett., 191(1), 115–121 (7 pages).CrossRefGoogle Scholar
  28. Seo, J. S.; Keum, Y. S.; Hu, Y.; Lee, S. E.; Li, Q. X., (2007). Degradation of phenanthrene by Burkholderia sp. C3: Initial 1,2-and 3,4-dioxygenation and meta-and ortho-cleavage of naphthalene-1,2-diol. Biodegradation., 18(1), 123–131 (9 pages).CrossRefGoogle Scholar
  29. Solano-Serena F.; Marchal R.; Ropars M.; Lebeault J. M.; Vandecasteele J. P., (1999). Biodegradation of gasoline: Kinetics mass balance and fate of individual hydrocarbons. J. Appl. Microbiol., 86(6), 1008–1016 (9 pages).CrossRefGoogle Scholar
  30. Swannell, R. P.J.; Lee, K.; McDonagh, M., (1996). Field evaluations of marine oil spill bioremediation. Microbiol. Rev., 60(2), 342–365 (24 pages).Google Scholar
  31. Swannell, R. P. J.; Mitchell, D.; Lethbridge, G.; Jones, D.; Heath, D.; Hagley, M.; Jones, D. M.; Petch, S.; Milne, R.; Croxford, R.; Lee, K., (1999). A field demonstration of the efficiency of bioremediation to treat an oiled shoreline following the Sea Empress incident. Environ. Tech., 20(8), 863–874 (12 pages).CrossRefGoogle Scholar
  32. Tam, N. F. Y.; Guo, C. L.; Yau, W. Y.; Wong, Y. S., (2002). Preliminary study on biodegradation of phenantherene by bacteria isolated from mangrove sediments in hong kong. Marine Poll. Bull., 45(1–12), 316–324 (9 pages).CrossRefGoogle Scholar
  33. Tehrani, D. M.; Minoui, S.; Herfatmanesh, A., (2009). Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. Bull. Environ. Contam. Toxicol., 82(2), 179–184 (6 pages).CrossRefGoogle Scholar
  34. Venosa, A. D.; Suidan, M. T.; Wrenn, B. A.; Strohmeier, K. L.; Haines, J. R.; Eberhardt, B. L.; King, D.; Holder, E., (1996). Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Tech., 30(5), 1764–1775 (12 pages).CrossRefGoogle Scholar
  35. Wang, J.; Xu, H.; An, M.; Yan, G., (2008). Kinetics and characteristics of phenanthrene degradation by a microbial consortium. Petrol. Sci., 5(1), 73–78 (6 pages).CrossRefGoogle Scholar
  36. Williams, P. A.; Sayers, J. R., (1994). The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation, 5(3–4), 195–217 (23 pages).CrossRefGoogle Scholar
  37. Yu, S. H.; Ke, L.; Wong, Y. S.; Tam N. F. Y., (2005). Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ. Int., 31(2), 149–154 (6 pages).CrossRefGoogle Scholar
  38. Yuan, S. Y.; Wei, S. H.; Chang. B. V., (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41(9), 1463–1468 (6 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringSung Kyun Kwan UniversityGyeonggi-DoSouth Korea
  2. 2.Centre for Environmental StudiesAnna UniversityChennaiIndia

Personalised recommendations