Advertisement

Assessment of heavy metal pollution in soil and their implications within and around mechanic villages

  • M. A. Nwachukwu
  • H. Feng
  • J. Alinnor
Article

Abstract

Analysis of nine composite soil samples, each made of three replicate core samples and their respective background samples collected from Okigwe, Nekede and Orji automobile mechanic villages were conducted. Metal concentrations (mg/kg) above the background levels in the top 100 cm soil profile ranges as follows: 748-70,606 (± 10114.3) for iron; 99-1090 +- 251.3 for lead; 186-600 ± 180 for manganese; 102–1001± 201.9 for copper; 8–23 ± 12.9 for cadmium; 4–27 ± 6.0 for chromium; and 3–10 ± 2.2 for nickel. The order of abundance is: iron > lead > manganese > copper> cadmium > chromium > nickel, with Okigwe > Nekede > Orji. Pollution indexes show that the metals have similar pollution trends in the three layers (L1–L3), with L1 (0–10 cm) > L2 (10–20 cm) > L3 (90–100 cm) in Okigwe, L3 >L1>L2 in Nekede, and L3 >L2 >L1 in Orji. In effect, the shaly Okigwe soil is more polluted in the top layer while the sandy Nekede and Orji are more polluted in the lower layers. Despite this order, metal bioavailability may be less in the Okigwe soil due to its high clay-silt content (47 %–64 %). Pollution factor for Okigwe is 0.8, Nekede is 0.7 and Orji is 0.5. Nekede is under severe to excessive pollution while Orji and Okigwe are under moderate to excessive pollution, with weathered depths 7.4m at Orji and Nekede and 4m at Okigwe as most implicated in the pollution process. Above provides the bases for introducing the innovative concepts of environmentally friendly mechanic village.

Keywords

Automobile wastes Environmentally friendly mechanic village Pollution factor Pollution index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agunbiade, F. O.; Fawale, A. T., (2009). Use of Siam weed biomarker in assessing heavy metal contaminations in traffic and solid waste polluted areas. Int. J. Environ. Sci. Tech., 6 (2), 267–276 (10 pages). Google Scholar
  2. Aina, M.; Matejka, G.; Mama, D.; Yao, B.; Moudachirou, M., (2009). Characterization of stabilized waste: Evaluation of pollution risk. Int. J. Environ. Sci. Tech., 6 (1), 159–165 (7 pages). CrossRefGoogle Scholar
  3. ASTM D3385-09, (2009). Standard test method for infiltration rate of soils in field using double-ring infiltrometer. ASTM International.Google Scholar
  4. Barabara, F.; Stephen, K.; William, W., (2002). Speciation and character of heavy metals contaminate soil using computer- controlled scan electron microscope. Environ. Forensic, 3 (2), 131–143 (13 pages). Google Scholar
  5. Charlatchka, R.; Cambier, P., (2000). Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut., 118 (1-2), 143–168 (26 pages). CrossRefGoogle Scholar
  6. Chee, Poh, S.; Tahir, N. M.; Zuchi, H. M.; Musa, M. I.; Hork Ng., K.; Noor, A. M., (2006). Heavy metal content in soil of major towns in the east coast of peninsular Malaysia. Chinese J. Geoch., 25 (S1), 56.Google Scholar
  7. Colmenares, C.; Deutsch, S.; Evans, C.; Nelson, A. J.; Terminello, L. J.; Reynolds, J. G.; Roos, J. W.; Smith, I. L., (2000). Analysis of manganese particulates from automotive decomposition of methylcyclopentadienyl manganese tricarbonyl. Appl. Surf. Sci., 151 (3-4), 189–202 (14 pages). CrossRefGoogle Scholar
  8. Corbillon, M. S.; Olazabal, M. A.; Madariaga, J. M., (2008). Potentiometric study of aluminum-fluoride complex equilibria and definition of the thermodynamic model. J. Solution Chem., 37 (4), 567–579 (13 pages). CrossRefGoogle Scholar
  9. Crowder, M., (1992). Interlaboratory comparisons: Round robins with random effects. Appl. Stat., 41 (2), 409–425 (17 pages). CrossRefGoogle Scholar
  10. D’Ascoli, R.; Rao, M. A.; Adamo, P.; Renella, G.; Landi, L.; Rutigliano, F. A.; Terribile, F.; Gianfreda, L., (2005). Impact of river overflowing on trace element contamination of volcanic soils in south Italy: II Soil bio and biochem properties in relation to trace element speciation. Environ. Pollut., 144 (1), 317–326 (10 pages). CrossRefGoogle Scholar
  11. David, H.; Johanna, E. J., (2000). Organochlorine, heavy metal and Polyaromatic Hydrocarbon Pollutant concentrations in the Great Barrier Reef environ: A Review. Mar. Pollut. Bull., 41 (7-12), 267–278 (12 pages). CrossRefGoogle Scholar
  12. Diatta, J. B.; Kocialkowski, W. Z.; Grzebisz, W., (2003). Lead and zinc partition coefficients of selected soils evaluated by Langmuir, F., and linear isotherms. Comm. Soil Sci. Plant Anal., 34 (17-18), 2419–2439 (21 pages). CrossRefGoogle Scholar
  13. Dioka, C. E.; Orisakwe, O. E.; Adeniyi, F. A.; Meludu, S. C., (2004). Liver and renal function tests in artisans occupationally exposed to lead in mechanic village in Nnewi, Nigeria. Int. J. Environ. Res. Pub. Health, 1 (1), 21–25 (5 pages). CrossRefGoogle Scholar
  14. Ergin, M.; Saydam, C.; Basturk, O.; Erdem, E.; Yoruk, R., (1991). Heavy metal concentration in surface sediments from the two coastal inlets (Golden horn estuary and Izmit bay of the northeastern sea of Marmara. Chem. Geol., 91 (3), 269–285 (17 pages). CrossRefGoogle Scholar
  15. Feng, H.; Cochran, J. K.; Lwiza, H.; Brownawell, B.; Hirschberg, D. J., (1998). Distribution of heavy metals and PCB contaminants in the sediments of an urban estuary of the Hudson River. Mar. Environ. Res., 45 (1), 69–88 (20 pages). CrossRefGoogle Scholar
  16. Feng, H.; Han, X.; Zhang, W.; Yu, L., (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar. Poll. Bull., 49 (11-12), 910–915 (6 pages). CrossRefGoogle Scholar
  17. Feng, X. D; Dang, Z; Huang, W. L; Yang, C., (2009). Chemical speciation of fine particle bound trace metals. Int. J. Environ. Sci. Tech., 6 (3), 337–346 (10 pages). Google Scholar
  18. Han, Y. M; Du, P. X; Cao, J. J; Posmenteir, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xian central China. Sci. Total Environ., 355 (1-3), 176–186 (11 pages). CrossRefGoogle Scholar
  19. Huang, X.; Sillanpää, M. Gjessing, E. T. Vogt, R. D., (2009). Water quality in the Tibetan Plateau: Major ions and trace elements in four major Asian rivers. Sci. Total Environ., 407 (24), 6242–6254 (13 pages). CrossRefGoogle Scholar
  20. Huang, X.; Sillanpää, M.; Duo, B.; Gjessing, E. T., (2008). Water quality in the Tibetan Plateau: Metal contents of four selected rivers. Environ. Pollut., 156 (2), 270–277 (8 pages). CrossRefGoogle Scholar
  21. Igbozuruike, C. W. I.; Opara-Nadi, A. O.; Okorie, I. K., (2009). Concentrations of Heavy metals in soil and cassava plant on sewage sludge dump; UC Davis, the Proceedings of the International Plant Nutrition Colloquium XVI, International Plant Nutrition Colloquium.Google Scholar
  22. Ivanova, E.; Stoimenova, M.; Gentcheva, G., (1994). Flame AAS determination of Cd, As and Ti in soil and sediments after their simultaneous carbodithiate extraction. Frensen. J. Anal. Chem., 348 (4), 317–319 (3 pages). CrossRefGoogle Scholar
  23. Ipeaiyeda, A. R.; Dawodu, M., (2008). Heavy metals contamination of topsoil and dispersion in the vicinities of reclaimed auto-repair workshops in Iwo Nigeria. Bull. Chem. Soc. Ethiopia, 22 (3), 339–348 (10 pages). Google Scholar
  24. Iwegbue, C. M., (2007). Metal fractionation in soil profiles at automobile mechanic waste dumps around Port- Harcourt. Waste Manage. Res., 25 (6), 585–593 (9 pages). CrossRefGoogle Scholar
  25. Kabata-Pendias, A., (1995). Agricultural Problems Related to Excessive Trace Metal Contents of Soil, in “Heavy Metals (Problems and Solutions)”, (Ed. W. Salomons, U. Förstner and P. Mader), Springer Verlag, Berlin, Heidelberg, New York, London, Tokyo, 3-18.Google Scholar
  26. Karbassi, A. R., Monavari, S. M., Nabi Bidhendi, G. R., Nouri, J., Nematpour, N., (2008). Metal pollution assessment of sediment and water in the Shur River. Environ. Monit. Assess., 147 (1-3) 107–116 (10 pages). CrossRefGoogle Scholar
  27. Kloke, A., (1980). Richtwerte ’80, Orientierungsdaten für tolerierbare Gesamtgehalte einiger Elemente in Kulturböden, Mitt. VDLUFA, H. 2, 9–11.Google Scholar
  28. Lacatusu, R., (1998). Appraising levels of soil contamination and pollution with heavy metals, Developments for planning and sustainable use of land resources published by European Soil Bureau joint research center, 393-402 (10 pages). Google Scholar
  29. Liu, C.; Zhang, Y; Zhang, F.; Zhang, S.; Yin, M.; Ye, H.; Hou, H.; Dong, H.; Zhang, M.; Jiang, J.; Pei, L., (2007). Assessing pollutions of soil and plant by municipal waste dump. Environ. Geol., 52 (4), 641–651 (11 pages). CrossRefGoogle Scholar
  30. Mandel, J., (1991). Evaluation and control of measurements. Quality and reliability series Dekker publication.Google Scholar
  31. Mohiuddin, K. M.; Zakir, H. M.; Otomo, K.; Sharmin, S.; Shikazono, N., (2010). Geochem distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int. J. Environ. Sci. Tech., 7 (1), 17–28 (12 pages). Google Scholar
  32. Murray, V. G.; Hendershot, W. H., (2000). Trace metal speciation and bioavailability in urban soils. Environ. Pollut., 107 (1), 137–144 (8 pages). CrossRefGoogle Scholar
  33. Nuga, B. O.; Akinbola, G. E.; Lawal, O.; Gaiser, T.; Herrmann, L., (2006). Production of the 1:350000 scale digital geologic map of the old Imo state. Electron. J. Environ. Agri. Food Chem., 5 (6), 1654–1658 (5 pages). Google Scholar
  34. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5 (3), 409–414 (6 pages).CrossRefGoogle Scholar
  35. Onianwa, P. C.; Jaiyeola, O. M.; Egekenze, R. N., (2001). Heavy metal contamination of topsoil in the vicinities of auto-repair workshops, gas stations and motor parks in a Nigerian city Toxicol. Environ. Chem., 84 (1-4), 33–39 (7 pages). Google Scholar
  36. Onweremadu, E. U.; Doruigbo, C. I., (2007). Assessment of Cd concentration of crude oil arable soil. Int. J. Environ. Sci. Tech., 4 (3), 409–412 (4 pages). Google Scholar
  37. Onyeagocha, A. C., (1980). Petrography and Depositional Environment of the Benin Formation, Nigeria. J. Mining Geol., 17, 147–151 (5 pages). Google Scholar
  38. Pardo, M. T., (2002). Sorption of lead, copper, zinc and cadmium by soils, effects of nitriloacetic acid on metal retention. Soil Sci. plant Anal., 31 (1-2), 31–40 (10 pages). CrossRefGoogle Scholar
  39. Remon, E.; Bouchardon, J. L.; Cornier, B.; Guy, B.; Leclerc, J. C.; Faure, O., (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 137 (2), 316–323 (8 pages). CrossRefGoogle Scholar
  40. Rukhin, R. L.; Mark, G. V., (1998). Estimation of a common mean and weighted means: Statistics. J. Am. Stat. Assoc., 93 (441), 303–308 (6 pages). CrossRefGoogle Scholar
  41. Sabah, A. A.; Bakheit, C. S.; Siddigui, R. A.; Al-Alawi, S. M., (2003). Atmospheric corrosion of metals. J. Corrosion Sci. Eng., 5.Google Scholar
  42. Shuman, L. M., (1995). Effects of nitrilotriacetic acid on metal adsorption isotherms for two soils. Soil Sci., 160 (2), 92–100 (9 pages). Google Scholar
  43. Sorvari, J.; Sillanpää, M., (1996). Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by D. Magna. Chemosphere, 33 (6), 1119–1127 (9 pages). CrossRefGoogle Scholar
  44. Tam, N. F. Y.; Wong, Y. S., (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ. Pollut., 100 (2) 195–205 (11 pages). CrossRefGoogle Scholar
  45. Virkutyte, J.; Sillanpää, M., (2006). Chemical Evaluation of Potable Water in Eastern Qinghai Province, China. Hum Health Aspects Environ. Int., 32 (1), 80–86 (7 pages). Google Scholar
  46. Ximming, W.; Genxing, P.; Ping, C., (2005). The distribution and speciation of heavy metals in urban soils in Nanjing City: In Urban Dimensions of Environmental Change, Science Press USA Inc., 25–33.Google Scholar
  47. Yuan, C. J.; Shi, B.; He, J.; Liu, L.; Jiang, G., (2004). Speciation of heavy metals in marine sediments from the East China sea by ICP-MS with sequencial extraction. Environ. Int., 30 (6), 769–783 (15 pages). CrossRefGoogle Scholar
  48. Zhang, L.; Ye, X.; Feng, H.; Jing, Y.; Ouyang, T.; Yu, X.; Liang, R.; Chen, W., (2007). Heavy metal contamination in the W Xiamen bay sediments and its vicinity China. Mar. Pollut. Bull., 54 (7), 974–982 (9 pages). CrossRefGoogle Scholar
  49. Zhang, W.; Feng, H.; Chang, J.; Jianguo, Q.; Hongxia, X.; Lizhong, Y.; (2009). Heavy metal contamination in surface sediments of Yantze intertidal zone: An assessment from different indexes. Environ. Pollut., 157 (5), 1533–1543 (11 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  1. 1.Department of Earth and Environmental StudiesMontclair State UniversityNew JerseyUSA
  2. 2.Department of ChemistryFederal University of TechnologyOwerriNigeria

Personalised recommendations