Presence of fluoroquinolones and sulfonamides in urban sewage sludge and their degradation as a result of composting

  • M. Lillenberg
  • S. Yurchenko
  • K. Kipper
  • K. Herodes
  • V. Pihl
  • R. Lõhmus
  • M. Ivask
  • A. Kuu
  • S. Kutti
  • S. V. Litvin
  • L. Nei
Article

Abstract

The concentrations of some widely used pharmaceuticals, namely fluoroquinolones (ciprofloxacin C17 H18FN3O3, norfloxacin C17 H18FN3O3 and ofloxacin C18 H20FN3O4 and sulfonamides (sulfadimethoxine C12 H14N4O4s and sulfamethoxazole C10 H11N3O3S were determined in urban sewage sludge utilized for making compost. The levels of degradation of these pharmaceuticals resulting from sludge treatment were assessed. The concentrations of the studied pharmaceuticals sufficiently varied both in sewage sludge and in compost and due to this phenomenon the possible danger resulting from the presence of pharmaceuticals in sewage sludge, used for composting, can not be ignored. The concentrations of the studied pharmaceuticals were lower in compost, if compared to the relevant concentrations in sewage sludge. The highest pharmaceutical concentration in sewage sludge — 426 μg/kg — was detected in the case of ciprofloxacin. The highest concentrations present in compost were 22 μg/kg of norfloxacin and 20 μg/kg of ciprofloxacin. Results show that before using the sewage sludge for making compost or before using the compost a fertilizer for food plants, they should be carefully tested against the content of commonly used pharmaceuticals.

Keywords

Ciprofloxacin Norfloxacin Ofloxacin Pharmaceuticals Soil pollution Sulfadimethoxine Sulfamethoxazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babel, S.; Sae-Tang, J.; Pecharaply, A., (2009). Anaerobic co-digestion of sewage and brewery sludge for biogas production and land application. Int. J. Environ. Sci. Tech., 6 (1), 131–140 (10 pages).CrossRefGoogle Scholar
  2. Banegas, V.; Moreno, J. L.; Moreno, J. I.; Garcia, C.; León, G.; Hernández, T., (2007). Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Manage., 27 (10), 1317–1327 (11 pages).CrossRefGoogle Scholar
  3. Buyuksonmez, F.; Sekeroglu, S., (2005). Presence of pharmaceuticals and personal care products (PPCPs) in biosolids and their degradation during composting. J. Resour. Sci. Tech., 2 (1), 31–40 (10 pages).Google Scholar
  4. Carballa, M.; Omil, F.; Ternes, T.; Lema, M. J., (2007). Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Resour., 41(10), 2139–2150 (12 pages).Google Scholar
  5. Carmosini, N.; Lee, L. S., (2008). Sorption and degradation of selected pharmaceuticals in soil and manure, in: Aga, D. S. (Ed.), Fate of pharmaceuticals in the environment and in water treatment systems. CRC Press, Boca Raton, London, New York.Google Scholar
  6. De Liguoro, M.; Poltronieri, C.; Capolongo, F; Montesissa, C., (2007). Use of sulfadimethoxine in intensive calf farming: Evaluation of transfer to stable manure and soil. Chemosphere, 68 (4), 671–676 (6 pages).CrossRefGoogle Scholar
  7. EMEA/CVMP/055/96, (1996). Commitee for Veterinary Medicinal Poducts. Note for guidance: environmental risk assessment for veterinary medicinal products other than GMO- containing and immunological products.Google Scholar
  8. García-Galán, M. J.; Díaz-Cruz, M. S.; Barceló, D., (2009). Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trends Anal. Chem., 28 (6), 804–819 (16 pages).CrossRefGoogle Scholar
  9. Göbel, A.; McArdell, C. S.; Joss, A.; Siegrist, H.; Giger, W. (2007). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 372 (2-3), 361–371 (11 pages).CrossRefGoogle Scholar
  10. Göbel, A.; Thomsen, A.; McArdell, C. S.; Joss, A.; Giger, W., (2005). Occurrence and Sorption Behavior of Sulfonamides, Macrolides, and Trimethoprim in Activated Sludge Treatment. Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dbendorf, Switzerland. Environ. Sci. Tech., 39 (11), 3981–3989 (9 pages).Google Scholar
  11. Golet, E. M.; Alder, A. C.; Giger, W., (2002a). Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt valley watershed, Switzerland. Environ. Sci. Tech., 36 (17), 3645–3651 (7 pages).CrossRefGoogle Scholar
  12. Golet, E. M.; Strehler, A.; Alder, A. C.; Giger, W., (2002b). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem., 74 (21) 5455–5462 (8 pages).CrossRefGoogle Scholar
  13. Golet, E. M.; Xifra, I.; Siegrist, H.; Alder, A. C.; Giger, W., (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Tech., 37 (15), 3243–3249 (7 pages).CrossRefGoogle Scholar
  14. Halling-Sørensen, B.; Nielsen, S. N.; Lanzky, P. F.; Ingerslev, F.; Lützhøft, H. C. H.; Jørgensen, S. E., (1998). Occurrence, fate and effects of pharmaceutical substances in the environment — A review. Chemosphere, 36 (2), 357–394 (38 pages).CrossRefGoogle Scholar
  15. Isidori, M.; Lavorgna, M.; Nardelli, A., (2005). Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ., 346 (1–3), 87–98 (12 pages).CrossRefGoogle Scholar
  16. Jones O. A. H.; Voulvoulis N.; Lester J. N., (2007). The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environ. Pollut., 145 (3), 738–744 (7 pages).CrossRefGoogle Scholar
  17. Kaonga, C. C.; Kumwenda, J.; Mapoma, H. T., (2010). Accumulation of lead, cadmium, manganese, copper and zinc by sludge worms; Tubifex tubifex in sewage sludge. Int. J. Environ. Sci. Tech., 7 (1), 119–126 (8 pages).Google Scholar
  18. Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton H. T., (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U. S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Tech., 36 (6), 1202–1211 (10 pages).Google Scholar
  19. Lazzari, L.; Sperni, L.; Bertin, P.; Pavoni, B., (2000). Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes. Chemosphere, 41 (3), 427–435 (9 pages).CrossRefGoogle Scholar
  20. Lillenberg, M.; Roasto, M.; Püssa, T., (2003). Drug residues in environment. Estimation of fluoroquinolones in soil and food plants. J. Agr. Sci., 14 (1), 13–26 (14 pages).Google Scholar
  21. Lillenberg, M.; Yurchenko, S.; Kipper, K.; Herodes, K.; Pihl, V.; Sepp, K.; Löhmus, R; Nei, L., (2009). Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid chromatography and electrospray ionization-mass spectrometry. J. Chromatographia. A, 1216 (32), 5949–5954 (6 pages).CrossRefGoogle Scholar
  22. Lu, Y. J.; Wu, X. W.; Guo, J. F., (2009). Characteristics of municipal solid waste and sewage sludge co-composting. Waste Manage., 29 (3), 1152–1157 (6 pages).CrossRefGoogle Scholar
  23. Madukasi, E. I.; Dai, X.; He, C.; Zhou, J., (2010). Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int. J. Environ. Sci. Tech., 7 (1), 165–174 (10 pages).Google Scholar
  24. Mahzuz, H. M. A.; Alam, R.; Alam, N. M.; Basak, R.; Islam, S. M., (2009). Use of arsenic contaminated sludge in making ornamental bricks. Int. J. Environ. Sci. Tech., 6 (2), 291–298 (8 pages).Google Scholar
  25. Marengo, J. R.; Kok, R. A.; O’Brien, G. K.; Velagaletti, R. R.; Stamm, J. L., (1997). Aerobic biodegradation of (C-14)-sarafloxacin hydrochloride in soil. Environ. Toxicol. Chem., 16 (3), 462–471 (10 pages).Google Scholar
  26. Matamoros V.; Hijosa M.; Bayona J. M., (2009). Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere, 75 (2), 200–205 (6 pages).CrossRefGoogle Scholar
  27. Migliore, L.; Brambilla, G.; Casoria, P.; Civitareale, C.; Cozzolino, S.; Gaudio, L., (1996). Effect of sulphadimethoxine contamination on barley (Hordeum distichum L, Poaceae, Liliopsida). Agricult. Ecosyst. Environm., 60 (2-3), 121–128 (8 pages).CrossRefGoogle Scholar
  28. Migliore, L.; Brambilla, G.; Cozzolino, S.; Gaudio, L., (1995). Effect on plants of sulfadimethoxine used in intensive farming (panicum-miliaceum, pisum-sativum and zea-mays). Agricult. Ecosyst. Environ., 52 (2-3), 103–110 (8 pages).CrossRefGoogle Scholar
  29. Nouri, J.; Mahvi, A. H.; Jahed, G. R.; Babaei, A. A., (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ. Geo., 55 (6), 1337–1343 (7 pages).CrossRefGoogle Scholar
  30. Pérez, S.; Eichhorn, P.; Aga, D. S., (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim at different stages of sewage treatment. Environ. Toxicol. Chem., 24 (6), 1361–1367 (7 pages).CrossRefGoogle Scholar
  31. Picó, Y.; Andreu, V., (2007). Fluoroquinolones in soil — risks and challanges. Anal. Bioanal. Chem., 387, 1287–1299 (13 pages).CrossRefGoogle Scholar
  32. Radjenovic J.; Petrović M.; Barcelö, D., (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res., 43 (3), 831–841 (11 pages).CrossRefGoogle Scholar
  33. Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5 (1), 99–106 (8 pages).CrossRefGoogle Scholar
  34. Tamtam, F.; Mercier, F.; Le Bot, B.; Eurin, J., Dinh, Q. T.; Clément, M.; Chevreuil, M., (2008). Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci. Total Environ., 393 (1), 84–95 (12 pages).CrossRefGoogle Scholar
  35. Tremier, A.; de Guardia, A.; Massiani, C.; Paul, E.; Martel, J. L., (2005). A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted. Bioresour. Tech., 96 (2), 169–180 (12 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  • M. Lillenberg
    • 1
  • S. Yurchenko
    • 2
  • K. Kipper
    • 2
  • K. Herodes
    • 2
  • V. Pihl
    • 2
  • R. Lõhmus
    • 3
  • M. Ivask
    • 4
  • A. Kuu
    • 4
  • S. Kutti
    • 4
  • S. V. Litvin
    • 4
  • L. Nei
    • 4
  1. 1.Department of Food Science and HygieneEstonian University of Life SciencesTartuEstonia
  2. 2.Institute of ChemistryUniversity of TartuTartuEstonia
  3. 3.Institute of PhysicsUniversity of TartuTartuEstonia
  4. 4.Department of Environmental ProtectionTartu College of Tallinn University of TechnologyTartuEstonia

Personalised recommendations