Advertisement

Groundwater resources assessment using numerical model: A case study in low-lying coastal area

  • S. M. Praveena
  • A. Z. ArisEmail author
Article

Abstract

The impacts of climate change and human pressure in groundwater have been greatest threats facing small islands. This paper represents a case study of groundwater responses towards the climate change and human pressures in Manukan Island Malaysia. SEAWAT-2000 was used for the simulations of groundwater response in study area. Simulations of six scenarios representing climate change and human pressures showed changes in hydraulic heads and chloride concentrations. Reduction in pumping rate and an increase in recharge rate can alter the bad effects of overdrafts in Manukan Island. In general, reduction in pumping rate and an increase in recharge rate are capable to restore and protect the groundwater resources in Manukan Island. Thus, for groundwater management options in Manukan Island, scenario 2 is capable to lessen the seawater intrusion into the aquifer and sustain water resources on a long-term basis. The selection of scenario 6 is the preeminent option during wet season. The output of this study provides a foundation which can be used in other small islands of similar hydrogeological condition for the purpose of groundwater resources protection.

Keywords

Climate change Human pressure Pumping rate Recharge rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul Rahim, S.; Abdul Ghani, R., (2002). An integrated approach for managing saltwater intrusion in coastal area. In Proceedings of the Regional Symposium on Environment and Natural Resources, Kuala Lumpur, Malaysia, 436–444 (9 pages).Google Scholar
  2. Abdullah, M. H., (2001). Phreatic water extraction from shallow aquifer of a small island. Ph.D. Thesis, University Teknologi Malaysia.Google Scholar
  3. Abdullah, M. H.; Kassim, M. A.; Hanapi, M. N., (2002). Saltwater encroachment into the sandy aquifer of Manukan island. Borneo Island, 12, 1–22 (22 pages).Google Scholar
  4. Abdullah M. H.; Mokhtar, M. B.; Tahir, S.; Awaluddin, A., (1997). Do tides affect water quality in the upper phreatic zone of a small oceanic island, Sipadan Island, Malaysia? Environ. Geol., 29 (1–2), 112–117 (6 pages).Google Scholar
  5. Anderson, M. P.; Woessner, W. W., (1992). Applied groundwater modeling, simulation of flow and advective transport. Academic Press, London.Google Scholar
  6. APHA., (1995). Standard methods for the examination of water and wastewater. 19th. Ed. Am. Water Works Association, Water Environment Federation, Washington.Google Scholar
  7. Aris, A. Z.; Abdullah, M. H.; Ahmed, A.; Woong, K. K.; Praveena, S. M., (2009). Hydrochemical changes in a small tropical island’s aquifer, Manukan Island, Sabah, Malaysia. Environ. Geol., 56 (8), 1721–1732 (12 pages).CrossRefGoogle Scholar
  8. Aris, A. Z.; Abdullah, M. H.; Musta, B., (2008). Hydrochemical analysis on groundwater in shallow aquifer of manukan and mabul is lands, Malaysia. International Association of Hydrological Sciences Red Book (IAHS) Publication, 319, 387–394 (8 pages).Google Scholar
  9. Aris, A. Z.; Abdullah, M. H.; Ahmed, A; Woong, K. K., (2007). Controlling factors of groundwater hydrochemistry in small island’s aquifer. Int. J. Environ. Sci. Tech., 4 (4), 441–450 (10 pages).CrossRefGoogle Scholar
  10. Basir, J.; Sanudin, T.; Tating, F. F., (1991). Late eocene planktonic foraminifera from the crocker formation, Pun Batu, Sabah. Warta Geol., 14 (4), 1–15 (16 pages).Google Scholar
  11. Belier, W.; D’ayala, P.; Hein, P., (1990). Sustainable development and environmental management of small islands. Taylor and Francis Group, UK.Google Scholar
  12. Bredehoeft, J. D., (2002). The water budget myth revisited: Why hydrogeologists model. Ground Water., 40 (4), 340–345 (6 pages).CrossRefGoogle Scholar
  13. Chen, B. R.; Hsu, S. M., (2004). Numerical study of tidal effects on seawater intrusion in confined and unconfined aquifers by time-independent finite-difference method. J. Waterw. Port Coast. Ocean Eng., 130 (4), 191–206 (16 pages).CrossRefGoogle Scholar
  14. Devlin, J. F.; Sophocleous, M., (2005). The persistence of the water budget myth and its relationship to sustainability. Hydrogeol. J., 13 (4), 549–554 (6 pages).CrossRefGoogle Scholar
  15. Don, N. C; Araki, H.; Yamanishi, H.; Koga, K., (2005). Simulation of groundwater flow and environmental effects resulting from pumping. Environ. Geol., 47 (3), 361–374 (14 pages).CrossRefGoogle Scholar
  16. Griggs, C. P.; Peterson, F. L., (1993). Groundwater flow dynamics and development strategies at the atoll scale. Ground water, 31 (2), 209–220 (12 pages).CrossRefGoogle Scholar
  17. Guo, W.; Langevin, C. D., (2002). User’s guide to SEAWAT-2000: a computer program for simulation of three-dimensional variable-density groundwater flow: Technique of water resources investigation. Technique of Water-Resources Investigations. Book 6.Google Scholar
  18. Hahn, J.; Lee, Y.; Kim, N.; Han, C; Lee, S., (1997). The groundwater resources and sustainable yield of Cheju volcanic island, Korea. Environ. Geo., 33 (1), 43–53 (11 pages).CrossRefGoogle Scholar
  19. Harbaugh, A. W.; Banta, E. R.; Hill, M. C; Macdonald, M. G, (2000). The US geological survey modular ground water models: User guide to modulization concepts and the ground-water flow process. US Geological Survey.Google Scholar
  20. He, B.; Takase, K.; Wang, Y., (2008). Numerical simulation of groundwater flow for a coastal plain in Japan: data collection and model calibration. Environ. Geol., 55 (8), 1745–1753 (9 pages).CrossRefGoogle Scholar
  21. IPCC, (1997). Climate Change 2007: Impacts, adaptations and vulnerability. Contribution of Working Group II to0 the Fourth Assessment Report of the Intergovernmental panel on Climate Change. Cambridge University Press. Cambridge, United Kingdom.Google Scholar
  22. Konikow, L. F., (1996). Numerical models of groundwater flow and transport. In Manual on mathematical models in isotope hydrology. IAEA-TECDOC-910. International Atomic Energy Agency, Vienna, Austria.Google Scholar
  23. Lin, J.; Snodsmith, J. B.; Zheng, C.; Wu, J., (2008). A modeling study of seawater intrusion in Alabama gulf coast, USA. Environ. Geol., 55 (1), 1235–1245 (11 pages).Google Scholar
  24. McDonald, M. G; Harbaugh, A. W., (1988). A modular three-dimensional finite difference groundwater flow model. In US Geological Survey Technique of water Resour.Google Scholar
  25. Moustadraf, J.; Razack, M.; Sinan, M., (2008). Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeol. J., 16 (7), 1411–1426 (16 pages).CrossRefGoogle Scholar
  26. Nouri, J.; Danehkar, A.; Sharifipour, R., (2008b). Evaluation of ecotourism potential in the northern coastline of the Persian Gulf. Environ. Geol., 55 (3), 681–686 (6 pages).CrossRefGoogle Scholar
  27. Nouri, J.; Karbassi. A. R.; Mirkia, S., (2008a). Environmental management of coastal regions in the Caspian Sea. Int. J. Environ. Sci. Tech., 5 (1), 43–52 (10 pages).CrossRefGoogle Scholar
  28. Ong’or, B. T. L.; Shu, L.; Liu, P.,(2007). Environmental impact assessment of risk associated with groundwater overdraft remedition in cone of depression, Jining, China. Environ. Geo., 53 (4), 751–762 (12 pages).CrossRefGoogle Scholar
  29. Paniconi, C; Khlaifi, I.; Lecca, G; Giacomelli, A.; Tarhouni, J., (2001). A modeling study of seawater intrusion in the Korba coastal plain, Tunisia. Phys. Chem. Earth Pt. C, 26 (4), 345–351 (7 pages).CrossRefGoogle Scholar
  30. Puraji, P. R.; Soni, A. K., (2008). Seawater intrusion studies near Kovaya limestone mine, Saurashtra coast, India. Environ. Monit. Assess., 154 (1–4), 93–109 (17 pages).Google Scholar
  31. Rejani, R.; Jha, M. K.; Panda, S. N.; Mull, R., (2008). Simualtion modeling for efficient groundwater management in Balasore coastal basin, India. Water Resour. Manage., 22 (1), 23–50 (18 pages).CrossRefGoogle Scholar
  32. Samsudin, A. R.; Haryono, A.; Hamzah, U.; Rafek, A. G, (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical methods: A case study from North Kelantan, Malaysia. Environ. Geol., 55 (8), 1737–1743 (7 pages).CrossRefGoogle Scholar
  33. Sen, K., (2008). Wadi Hydrology. CRC Press. Shammas, M. I.; Jacks, G., (2007). Seawater intrusion in the Salalah plain aquifer. Oman. Environ. Geol., 53 (3), 575–587 (13 pages).Google Scholar
  34. Singh, V. S.; Gupta, C. P., (1999). Feasibility of groundwater withdrawal in a coral island. J. Hydrol. Sci., 44 (2), 173–182 (10 pages).CrossRefGoogle Scholar
  35. Sophocleous, M.; Devlin, J. F., (2004). Is natural recharge relevant to groundwater sustainable development? Letter to the editor, Ground water, 42, 618 (1 page).Google Scholar
  36. Spitz, K.; Moreno, J., (1996). A practical guide to groundwater and solute transport modeling. John Wiley and Sons, New York.Google Scholar
  37. Tunku Abdul Rahman (2007). Tunku Abdul Rahman Marine Park. http://www.sabahtourism.com/sabah-malaysian-borneo.
  38. Vaccaro, J. J., (1992). Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington. J. Geophys. Res., 97 (D3), 2821–2833 (13 pages).CrossRefGoogle Scholar
  39. Welsh, W. D., (2008). Water balance modeling in Bowen, Queensland and the ten iterative steps in model development and evaluation. Environ. Model. Softw., 23 (2), 195–205 (10 pages).CrossRefGoogle Scholar
  40. Werner, A. D.; Gallagher, M. R., (2006). Characterization of seawater intrusion in the Pioneer Valley, Australia using hydrochemistry and the three-dimensional numerical modeling. Hydrogeol. J., 14 (8), 1452–1469 (18 pages).CrossRefGoogle Scholar
  41. White, I.; Falkland, T.; Perez, P.; Dray, A.; Metutera, T.; Metai, E.; Overmars, M., (2007). Challenges in freshwater management in low coral atolls. J. Cleaner. Prod., 15 (16), 1522–1528 (7 pages).CrossRefGoogle Scholar
  42. Wong, P. P., (1998). Coastal tourism development in Southeast Asia: relevance and lessons for coastal zone management. Ocean Coast. Manage., 38 (2), 89–109 (21 pages).CrossRefGoogle Scholar
  43. Zheng, C; Wang, P. P., (1999). A modular three dimensional multi species model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: documentation and user guide. (US Army Engineer Research and Development Center, USA.Google Scholar
  44. Zhou, X.; Chen, M.; Liang, C., (2003). Optimal schemes of groundwater exploitation for prevention of seawater intrusion in the Leizhou Penisula in Southern China. Environ. Geol., 43 (8), 985–987 (9 pages).Google Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  1. 1.School of Science and TechnologyUniversiti Malaysia SabahSabahMalaysia
  2. 2.Department of Environmental Sciences, Faculty of Environmental StudiesUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations