Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment

  • G. ImmanuelEmail author
  • R. Dhanusha
  • P. Prema
  • A. Palavesam


The cellulolytic enzyme-endoglucanase activity against coir fibre, a major biowaste by bacteria such as Cellulomonas, Bacillus and Micrococcus spp. isolated from coir retting effluents of estuarine environment was studied. The enzyme assay was carried out by using various concentrations (0.5 − 2%) of substrate of coir powder as a carbohydrate in different pH (5–9) and temperature (20–50 °C). The enzyme activity was minimum in 0.5% substrate concentration at lower pH 5 (0.0087, 0.0143 and 0.0071 U/mL) and at 20 °C temperature (0.0151, 0.0154 and 0.0122 U/mL) by the bacterial strains such as Cellulomonas, Bacillus and Micrococcus spp respectively. Then this level was increased and reached maximum at the neutral pH (0.0172, 0.0165 and 0.0121 U/mL) and at 40 °C (0.0336, 0.0196 and 0.0152 U/mL) by the selected bacterial species. Further increase of pH and temperature, the enzyme activity reduced considerably to 0.0083, 0.0143 and 0.0037 U/mL at pH 9 and 0.0154, 0.0197 and 0.0121 U/mL at 50 °C by the tested bacterial strains. The same trend was also obtained in oth er substrate concentrations such as 1.0, 1.5 and 2.0 %. With in the four substrate concentrations, the endoglucanase enzyme activity was more in 1.5% concentration at the tested pH and temperatures. From the over all result, it was observed that, among the three bacterial strains, the enzyme activity was more in Cellulomonas sp, followed by Bacillus and Micrococcus spp. in varying pH and temperature.


Cellulolytic enzyme Endoglucanase coir retting effluent Cellulomonas Bacillus Micrococcus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiba, S., Kimura, Y., Yamamoto, K. and Kumagap, H., (1995). Purification and characterization of a protease-resistant cellulase from Aspergillus niger. J. Fermen. Bioengin., 79, 125–132.CrossRefGoogle Scholar
  2. Brown, J. A., Collin, S. A. and Wood, T. M., (1987). Development of a medium for high cellulase, xylanase and ß-glucosidase production by a mutant strain (NTG 1116) of the cellulolytic fungus Pénicillium pinophilium. Enzyme Micro. Tech., 5, 425–429.Google Scholar
  3. Cailliex, C, Benoit, E., Gelhaye, H., Petitdemange, H. and Raval, G, (1992). Solubilization of Cellulose by mesophilic cellulolytic Clostridia isolated from a municipal solid-water diester. Bioresource Technology, Elsevier Science Publisher Ltd., England, 77–483.Google Scholar
  4. Cappuccino, J. G. and Sherman, N., (1999). Microbiology-A laboratory manual. 4th edition, Addision Wesley Longman, Inc. Sydney, Australia, 477.Google Scholar
  5. Durand, H., Sovcaille and Tiraby, G, (1984). Comparative study of cellulase and hemi cellulases from four fungi. Enzyme Micro. Tech., 6, 175–180.CrossRefGoogle Scholar
  6. Fukumori, F., Kudo, T. and Horikoshi, K., (1985). Purification and properties of a cellulase from alkalophilic Bacillus sp. No. 1139. J. Gen. Microbiol., 131, 129–135.Google Scholar
  7. Garcia-Martinez, D. V., Shinmyo, A., Madia, A. and Deman, A. L., (1980)., Studies on cellulase production by Clostridium thermocellum. Europ. J. Appl. Microbiol. Biotechnol., 9, 189–197.CrossRefGoogle Scholar
  8. Gharpuray, M. M., Lee, Y. H. and Fan, L. T, (1983)., Structural modification of lignocellulosics by treatment to enhance enzymatic hydrolysis. Biotechnol. Bioeng., 25, 157–172.CrossRefGoogle Scholar
  9. Gokhale, D. V., Soo-Han, E., Srinivasan, V. R. and Deobagkar, D. N., (1984)., Transfer of DNA coding for cellulases from Cellulomonas sp. to Bacillus subtilis by protoplast fusion. Biotechnol. Lett., 6, 627–632.CrossRefGoogle Scholar
  10. Gokhan Coral, G, Burhan, A. N., Naldi, M. and Hatice, G. V., (2002)., Some Properties of Crude Carboxymethyl Cellulase of Aspergillus nigerZIO Wild-Type Strain. Turkish Journal of Biology, 26, 209–213.Google Scholar
  11. Greaves, H., (1971)., The effect of substrate availability on cellulolytic enzyme production by selected wood rotting microorganisms. Australian J. Bio. Sei., 24, 1167–1180.Google Scholar
  12. Haggett, K. D., Choi, W. Y and Dunn, N. W., (1978)., Mutants of Cellulomons, which produce increased levels of ßglucosidase. Europ. J. Appl. Microbiol. Biotechnol., 6, 189–191.CrossRefGoogle Scholar
  13. Hankin, L. and Anagnostakis, S., (1977)., Solid media containing Carboxy methyl cellulose to detect CM cellulase activity of Microorganisms. J. Gen. Microbiol., 98, 109–115.CrossRefGoogle Scholar
  14. Hoffman, R. M. and Wood, T. M., (1985)., Isolation and partial characterization of a mutant of Pénicillium for the saccharification of straw. Biotechnol. Bioeng., 27, 81–85.CrossRefGoogle Scholar
  15. Kansoh, A. L., Essam, S. A. and Zeinat, A. N., (1999)., Biodegradation and utilization of bagasse with Trichoderma reesei. Polym. Degrad. Stab., 62, 273–278.CrossRefGoogle Scholar
  16. Kawai, S. H., Okoshi, K., Ozaki, S., Shikata, K. A. and Ito, S., (1988). Neutrophilic Bacillus strain, KSM-522, that produces an alkaline carboxymethyl cellulase. Agri. Bio. Chem., 52, 1425–1431.CrossRefGoogle Scholar
  17. Kawamori, M., Takaymma, K. and Takasawa, S., (1987). Production of cellulase by a thermophilic fungus Thermoascus aurantiacus A-131. Agri. Bio. Chem., 51, 647–654.CrossRefGoogle Scholar
  18. Khyami-Horani, FL, (1991). Characterization and Cellulase Synthesis. In Some Thermotolerant Bacilli from Jordan. PhD Thesis. University of Heriot-Watt, Edinburgh, Scotland.Google Scholar
  19. Lakshmikant, K. and Mathur, S. N., (1990). Cellulolytic activities of Cheatomium globosum on different cellulosic substrates. W. J. Microbiol. Biotech., 11, 23–26.CrossRefGoogle Scholar
  20. Leschine, S. B. and Canale, E., (1983). Parola. Mesphilic cellulolytic Clostridia from fresh water environments. Appl. Environ. Microbiol., 46, 728–737.Google Scholar
  21. Mandels, M., Hontz, L. and Nystron, J., (1974). Enzymatic hydrolysis of waste cellulose. Biotech. Bioengin., 16, 147–1493.CrossRefGoogle Scholar
  22. Mandels, M., (1975). Microbial sources of cellulases, BBiotech. Bioengin., 5, 81–105.Google Scholar
  23. Madden, R. H., Bryder, M. J. and Poole, N. J., (1982). Isolation and characterisation of an anaerobic, cellulolytic bacterium Clostridium papoyrosolvens sp. Nov. acellulolytic thermophile. Int. J. Sys. Bacter., 32, 87–91.CrossRefGoogle Scholar
  24. Madden, R. FL, (1983). Isolation and characterisation of Clostridium stereorurium sp. Nov. a cellulolytic thermophile. lint. J. Sys. Bacter., 33, 837–840.CrossRefGoogle Scholar
  25. Margaritis, A. and Merchant, R. F., (1986). Optimization of fermentation conditions for thermostable cellulase production by Thiolana terressus. J. Indust. Microbiol., 1, 149–150.CrossRefGoogle Scholar
  26. Nakamura, K. and Kppamura,. K., (1982). Isolation and identification of crystalline cellulose hydrolyzing bacterium and its enzymatic properties. J. Ferment. Technol., 60(4), 343–348.Google Scholar
  27. Ojumu, T., Solomon, V., Bamidele, O., Betiku, E., Layokun S. K. and Amigun, B., (2003). Cellulase Production by Aspergillus flavus Linn Isolate NSPR 101 fermented in sawdust, bagasse and corncob. African J. Biotechnol., 2(6), 150–152.Google Scholar
  28. O’Neill, G, Goh, S. H., Warren, R. A, Kilburn D. G and Miller, R. C, (1986). Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene, 44(2–3), 325–330.CrossRefGoogle Scholar
  29. Palop, M. L., Valles, S., Pinaga, F. and Flors, A., (1989). Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens Sp. Int. J. Sys. Bacteriol., 39, 68–71.CrossRefGoogle Scholar
  30. Petidemange, E., Caillet, F., Giallo, J. and Caudin, C, (1984). Clostidium cellulolyticum sp. novo, a cellulolytic mesophilic species from decayed grass. Int. J. Sys. Bacteriol., 34, 155–159.CrossRefGoogle Scholar
  31. Po-Jui Chen, W., Tao-Chun, C, Yao-Tsung and Liang, P. L., (2004). Purification and characterization of carboxymethyl cellulase from Sinorhizobium fredii, Bot.Bull.Acad.Sin., 45, 111–118.Google Scholar
  32. Prasetsan, P., Doelle, H. W., (1987). Nutrient optimization for cellulase biosynthesis by a newly isolated Cellulomonas sp. Mircen. J. 3, 33–44.CrossRefGoogle Scholar
  33. Robson, L. M. and Chambliss, G. H., (1984). Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Environ. Microbiol., 47, 1039–1046.Google Scholar
  34. Sexana, S., Bahadur, J. and Varma, A., (1993). Cellulose and hemi-cellulose degrading bacteria from termite gut and mound soils of India. Int. J. Microbiol., 33(1), 55–60.Google Scholar
  35. Shen, H., Meinke, A., Tomme, P., Damude, H. G, Kwan, E., Kilburn, D. G, Miller, R. C, Warren Jr, R. A. J. and Gilkes, N. R., (1995). Cellulomonas fimi cellobiohydrolases In: J. N. Saddler and M. H. Penner (Eds.) Enzymatic Degradation of Insoluble Polysaccharides American Chem. Society Washington DC,. 174–196.Google Scholar
  36. Shikata, S., Saeki, K., Okoshi, H., Yoshimatsu, T., Ozaki, K., Kawai, S. and Ito, S., (1990). Alkaline cellulase for laundry detergents: production by alkalophilic strains of Bacillus and some properties of crude enzymes. Agri. Bio. Chem., 52, 91–96.CrossRefGoogle Scholar
  37. Sharma, V. K. and Hobson, P. N., (1985). Isolation and cellulolytic activities of bacteria from a cattle waste anaerobic digester and the properties of some Clostridium species. Agri. Was., 14, 173–196.CrossRefGoogle Scholar
  38. Skinner, F. A., (1960). The isolation of anaerobic cellulose decomposing bacteria from soil. J. Gen. Microbiol., 22, 539–554.CrossRefGoogle Scholar
  39. Sleat, R. and Mah, R. A., (1984). Clostridium populeti sp. Novo, a cellulolytic species from a woody-biomass digester. J. Sys. Bacteriol., 35, 160–163.CrossRefGoogle Scholar
  40. Solomon, B. O., Amigun, B., Betiku, E., Ojumu, T. and Layokun, S. K., (1999). Optimization of Cellulase Production by Aspergillus flavus Linn Isolate NSPR 101 Grown on Bagasse. JNSChE, 16, 61–68.Google Scholar
  41. Stewart, B. and Leatherwood, J. M., (1976). Derepressed synthesis of cellulase by Cellulomonas. J. Bacteriol., 128, 609–615.Google Scholar
  42. Tangnu, S. K., Blanch, H. W. and Wilke, C. R., (1981). Enhanced production of cellulase, hemicellulase and β-glucosidase by Trichoderma reesei. Biotech. Bioengin., 23, 1837–1849.CrossRefGoogle Scholar
  43. Whittle, D. J., Kilburn, D. G, Warren, R. A. and Miller, R. C, (1982). Molecular cloning of a Cellulomonas fimi cellulose gene in Escherichia coli. Gene, 17(2), 139–145.CrossRefGoogle Scholar
  44. Wood, T. M. and Bha, K. M., (1988). Methods for measuring cellulase activities. Method. Enzymol., 160, 87–112.CrossRefGoogle Scholar
  45. Zar, J. H., (1974). Bio-Statistical Analysis, Prentice Hall, New Jersey, 620.Google Scholar

Copyright information

© Islamic Azad University 2006

Authors and Affiliations

  • G. Immanuel
    • 1
    Email author
  • R. Dhanusha
    • 1
  • P. Prema
    • 1
  • A. Palavesam
    • 1
  1. 1.Marine Biotechnology Division, Centre for Marine Science and TechnologyM. S. UniversityTamilnaduIndia

Personalised recommendations