Aging Clinical and Experimental Research

, Volume 4, Issue 2, pp 103–113 | Cite as

Age-related alterations in gonadotropin, adrenocorticotropin and growth hormone secretion

  • Daniela Cocchi
Review Article

Abstract

This review addresses some relevant aspects of the aging of the neuroendocrine system, particularly the reproductive and the adrenocortical axis. Deterioration of the reproductive function, one of the most striking endocrine alterations occurring in aging, is related to a complex interplay of factors. They comprise alterations occurring at the level of all the three components of the reproductive axis, the gonads, the pituitary and the brain, acting synergistically to disrupt the normal pulsatile release of gonadotropins. Particular relevance is given to the neurotoxic action of estrogens during the constant estrous phase occurring in aged female rodents, at the level of hypothalamic nuclei regulating gonadotropin secretion. This effect, to be found also in women during the anovulatory period of the perimenopause, would worsen the dysregulation of the central mechanisms controlling the reproductive function. The activity of the adrenocortical (HPA) axis increases with advancing age in rodents but also, although less strikingly, in humans. The main alteration which can be evidenced in both species is a delayed post- stimulus decline in plasma corticosteroid levels, indicating a diminished sensitivity to glucocorticoids of HPA axis feedback regulation in the elderly. Increased exposure to the highly catabolic adrenal glucocorticoids appears to be associated to a loss of cerebral neurons, particularly in the hippocampus, and the emergence of cognitive deficits in the aged rats. The relevance of experimental data performed in rodents to healthy and pathological human aging is extensively discussed. Finally, this chapter considers the age- related impairment in growth hormone secretion, a common finding of all the animal species investigated so far. The etiology of the hyposomatotropism of aging is namely linked to a progressive defect in growth hormone releasing hormone- producing hypothalamic neurons, although alterations of somatostatin- producing neurons have also been described. This background knowledge makes the use of neuroactive compounds aimed at restoring the physiologic function of hypothalamic hypophysiotropic hormones a rational approach to rectify the alterations of the neuroendocrine system occurring in elderly individuals. (Aging Clin. Exp. Res. 4: 103- 113, 1992)

Keywords

Aging neuroactive drugs neurotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayflick L.: Theories of biological aging. Exp. Gerontol. 20: 145–159, 1985.PubMedCrossRefGoogle Scholar
  2. 2.
    Sapolsky R.M., Krey L.C., Mc Ewen B.S.: Prolonged glucocorticoid exposure reduced hippocampal neuron number: implications for aging. J. Neurosci. 5: 1221–1226, 1985.Google Scholar
  3. 3.
    Sapolsky R.M., Krey L.C., Mc Ewen B.S.: The adrenocortical axis in the aged rat: impaired sensitivity to both fast and delayed feedback inhibition. Neurobiol. Aging 7: 331–336, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Meany M.J., Aitken D.H., van Berkel C, Bhatnagar S., Sapolsky R.M.: Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239: 766–768, 1988.CrossRefGoogle Scholar
  5. 5.
    Brawer J.R., Naftolin F., Martin I., Sonneschein G.: Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 103: 501–512, 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Schipper H., Brawer J.R., Nelson J.F., Felicio L.S., Finch C.E.: Role of the gonads in the histologie aging of the hypothalamic arcuate nucleus. Biol. Reprod. 25: 413–419, 1981.PubMedCrossRefGoogle Scholar
  7. 7.
    Treolar A.E., Boynton R.E., Behn B.G., Brown B.W.: Variation of the human menstrual cycle through reproductive life. Int. J. Fertil. 12: 77–126, 1967.Google Scholar
  8. 8.
    Sherman B.M., Koreman S.G.: Hormonal characteristics of the human menstrual cycle throughout reproductive life. J. Clin. Invest. 55: 699–706, 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    England P.G., Skinner L.G., Cottrell K.M., Sellwood R.A.: Serum oestradiol-17ß in normal women. Br. J. Cancer 29: 462–469, 1974.PubMedCrossRefGoogle Scholar
  10. 10.
    Nass T.E., Lapolt P.S., Judd H.L., Lu J.K.H.: Alterations in ovarian steroid and gonadotropin secretion preceding the cessation of regular oestrus cycles in ageing female rats. J. Endocrinol. 100: 43–50, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Page R.D., Butcher R.L.: Follicular and plasma patterns of steroids in young and old rats during normal and prolonged estrous cycles. Biol. Reprod. 27: 383–392, 1982.PubMedCrossRefGoogle Scholar
  12. 12.
    Everett J.W.: Further study of oestrous cycles that follow interruption of spontaneous persistent oestrus in middle-aged rats. J. Endocrinol. 102: 271–276, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Felicio L.S., Nelson J.F., Gosden R.G., Finch C.E.: Restoration of ovulatory cycles by young ovarian grafts in aging mice: potentiation by long-term ovariectomy decreases with age. Proc. Natl. Acad. Sci. USA 80: 6076–6080, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson J.F., Felicio L.S.: Radical ovarian resection advances the onset of persistent vaginal comification but only transiently disrupts hypothalamic-pituitary regulation of cyclicity in C57 B1/6J mice. Biol. Reprod. 35: 957–964, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Hsu H.K., Peng M.T.: Hypothalamic neuron number of old female rats. Gerontology 24: 434–440, 1978.PubMedCrossRefGoogle Scholar
  16. 16.
    Wise P.M., Ratner A.: Effect of ovariectomy on plasma LH, FSH, estradiol and progesterone and medial basal hypothalamic LHRH concentrations in old and young rats. Neuroendocrinology 30: 15–19, 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Felicio L.S., Nelson J.F., Finch C.E.: Prolongation and cessation of estrous cycles in aging C57 B1/6J mice are differentially regulated events. Biol. Reprod. 34: 849–858, 1986.PubMedCrossRefGoogle Scholar
  18. 18.
    Sopelak V.M., Butcher R.L.: Contribution of the ovary versus hypothalamus-pituitary to termination of estrous cycles in aging rats using ovarian transplants. Biol. Reprod. 27: 29–37, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Wise P.M.: Aging of the female reproductive system: a neuroendocrine perspective. In: Müller E.E., Mac Leod R.M. (Eds.), Neuroendocrine Perspectives, Vol. 7. Springer Verlag, Berlin, 1989, pp. 117–168.CrossRefGoogle Scholar
  20. 20.
    Sherman B.M., Koremman S.G.: Hormonal characteristics of the human menstrual cycle throughout reproductive life. J. Clin. Invest. 55: 699–706, 1975.PubMedCrossRefGoogle Scholar
  21. 21.
    De Paolo L.V., Chappel S.C.: Alterations in the secretion and production of follicle- stimulating hormone precede age- related lengthening of estrous cycles in rats. Endocrinology 118: 1127–1133, 1986.CrossRefGoogle Scholar
  22. 22.
    De Paolo L.V.: Age-associated increases in serum follicle-stimulating hormone levels on estrous are accompanied by reduction of ovarian secretion of inhibin. Exp. Aging Res. 13: 3–7, 1987.CrossRefGoogle Scholar
  23. 23.
    Metcalf M.G., Donald R.A., Livesey J.H.: Pituitaryovarian function inormal women during the menopausal transition. Clin. Endocrinol. 14: 145–155, 1981.CrossRefGoogle Scholar
  24. 24.
    Wise P.M.: Estradiol-induced daily luteinizing hormone and prolactin surges in young and middle-aged rats: correlations with age-related changes in pituitary responsiveness and catecholamine turnover rates in microdissected brain areas. Endocrinology 115: 801–809, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Wise P.M., Camp P.: Changes in concentrations of estradiol nuclear receptors in the preoptic area, medial basal hypothalamus, amygdala, and pituitary gland of middle-aged and old cycling rats. Endocrinology 114: 92–98, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Wise P.M., Mc Ewen B.S., Parsons B., Rainbow T.C.: Age-related change in cytoplasmic estradiol receptor concentrations in microdissected brain nuclei: correlation with changes in steroid-induced sexual behavior. Brain Res. 321: 119–126, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Wide L., Hobson B.M.: Qualitative difference in follicle- stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J. Clin. Endocrinol. Metab. 56: 371–375, 1983.PubMedCrossRefGoogle Scholar
  28. 28.
    Chappel S.C., Ulba-Aguirre A., Coutifaris C.: Biosynthesis and secretion of follicle-stimulating hormone. Endocr. Rev. 4: 179–211, 1983.PubMedCrossRefGoogle Scholar
  29. 29.
    Knobil E.: The neuroendocrine control of the menstrual cycle. Recent Prog. Horm. Res. 36: 53–88, 1981.Google Scholar
  30. 30.
    Ferin M., Van Vugt D., Wardlaw S.: The hypothalamic control of the menstrual cycle and the role of endogenous opioid peptides. Recent Prog. Horm. Res. 40: 441–485, 1984.PubMedGoogle Scholar
  31. 31.
    Richardson S.J., Senikas V., Nelson J.F.: Follicular depletion during the menopausal transition. J. Clin. Endocrinol. Metab. 65: 1231–1237, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Wise P.M., Dueker E., Wuttke W.: Age-related alterations in pulsatile LH release: effects of long-term ovariectomy, repeated pregnancies and naloxone. Biol. Reprod. 39: 1060–1066, 1988.PubMedCrossRefGoogle Scholar
  33. 33.
    Peng M.-T., Huang H.-H.: Aging of hypothalamic-pituitary ovarian function in the rat. Fertil. Steril. 23: 535–542, 1972.PubMedGoogle Scholar
  34. 34.
    Müller E.E., Nisticò G.: Brain messengers and the pituitary. Academic Press, New York, 1989.Google Scholar
  35. 35.
    Wise P.M.: Aging of the female reproductive system. Rev. Biol. Res. Aging. 1: 195–222, 1983.Google Scholar
  36. 36.
    Simpkins J.W.: Changes in hypothalamic hypophysiotropic hormones and neurotransmitters during aging. In: Meites J. (Ed.), Neuroendocrinology of Aging. Plenum Press, New York, 1983, pp. 41–49.CrossRefGoogle Scholar
  37. 37.
    Laufer L.R., Erlik Y., Meldrum D.R., Judd H.L.: Effect of clonidine on hot flashes in postmenopausal women. Obstet. Gynecol. 60: 583–586, 1982.PubMedGoogle Scholar
  38. 38.
    Hammond M.G., Hatley L, Talbert L.M.: A double blind study to evaluate the effect of methyl dopa on menopausal vasomotor flushes. J. Clin. Endocrinol. Metab. 58: 1158–1160, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Walker R.F.: Reinstatement of LH surges by serotonin neuroleptics in aging constant estrous rats. Neurobiol. Aging 3: 253–257, 1982.PubMedCrossRefGoogle Scholar
  40. 40.
    Cooper R.L., Mc Namara M.C., Linnoila M.: Catecholaminergic-serotoninergic balance in the CNS and reproductive cycling in aging rats. Neurobiol. Aging 7: 9–15, 1986.PubMedCrossRefGoogle Scholar
  41. 41.
    Sencar-Cupovic I., Milkovic S.: The development of sex differences in adrenal morphology and responsiveness to stress of rats from birth to end of life. Mech. Ageing Dev. 5: 1–9, 1976.PubMedCrossRefGoogle Scholar
  42. 42.
    Brett L.P., Chong G.S., Coyle S., Levine S.: The pituitary adrenal response to novel stimulation and ether stress in young adult and aged rats. Neurobiol. Aging 4: 133–138, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Tang F., Philips J.G.: Some age-related changes in pituitary adrenal function in the male laboratory rat. J. Gerontol. 33: 377–382, 1978.PubMedGoogle Scholar
  44. 44.
    Sonntag W.E., Golieszek A.G., Brodish A., Elridge J.C.: Diminished diurnal secretion of adrenocorticotropin (ACTH) but not corticosterone, in old male rats: possible relation to increased adrenal sensitivity to ACTH in vivo. Endocrinology 120: 2308–2315, 1987.PubMedCrossRefGoogle Scholar
  45. 45.
    De Kosky S.T., Scheff S.W., Cotman C.W.: Elevated corticosterone levels: a possible cause of reduced axon sprouting in aged animals. Neuroendocrinology 38: 33–38, 1984.CrossRefGoogle Scholar
  46. 46.
    Dilman V.: The law of deviation of homeostasis and diseases of aging. John Wright, Boston, 1981.Google Scholar
  47. 47.
    Sapolsky R.M., Krey L.C., Mc Ewen B.S.: Corticosterone receptors decline in a site-specific manner in the aged rat. Brain Res. 289: 235–240, 1983.PubMedCrossRefGoogle Scholar
  48. 48.
    Ritger H., Veldhuis H., De Kloet E.R.: Spatial orientation and hippocampal corticosterone receptor system of old rats: effects of ACTH 4-9 analogue ORG2766. Brain Res. 309: 393–399, 1984.CrossRefGoogle Scholar
  49. 49.
    Mc Ewen B.S., De Kloet E.R., Rostene W.H.: Adrenal steroid receptors and actions in the nervous system. Physiol. Reu. 66: 1121–1150, 1986.Google Scholar
  50. 50.
    Landfield P., Waymire J., Lynch G.: Hippocampal aging and adrenocorticoids: a quantitative correlation. Science 202: 1098–1101, 1978.PubMedCrossRefGoogle Scholar
  51. 51.
    Siesjo B.: Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1: 155–162, 1981.PubMedCrossRefGoogle Scholar
  52. 52.
    Munck A.: Glucpcorticoid inhibition of glucose uptake by peripheral tissues: old and new evidence, molecular mechanisms and physiological significance. Perspect. Biol. Med. 14: 265–280, 1971.PubMedGoogle Scholar
  53. 53.
    Landgraf R., Mitro A., Hess J.: Regional net uptake of 14C- glucose by rat brain under the influence of corticosterone. Endocrinol. Exp. 12: 119–123, 1978.PubMedGoogle Scholar
  54. 54.
    Issa A.M., Rowe W., Gauthier S., Meaney M.J.: Hypothalamic — pituitary adrenal activity in aged cognitively impaired and unimpaired rats. J. Neurosci. 10: 3247–3254, 1990.PubMedGoogle Scholar
  55. 55.
    Pavlov E.P., Harman S.M., Chrousos G.P., Loriaux D.L., Backman M.R.: Response of plasma adrenocorticotropin, cortisol and dihydroepiandrosterone to ovine corticotropin- releasing hormone in healthy aging men. J. Clin. Endocrinol. Metab. 62: 767–772, 1986.PubMedCrossRefGoogle Scholar
  56. 56.
    Davis L.D., Davis B.M., Greenwald B.S.: Cortisol and Alzheimer’s disease. I. Basal studies. Am. J. Psychiatry 143: 300–305, 1986.PubMedGoogle Scholar
  57. 57.
    Dodt C., Dittmann J., Hruby J., Spath-Schwable E., Born J., Schuttler R., Fehm H.L.: Different regulation of adrenocorticotropin and cortisol secretion in young, mentally healthy elderly and patients with senile dementia of Alzheimer’s type. J. Clin. Endocrinol. Metab. 72: 272–276, 1991.PubMedCrossRefGoogle Scholar
  58. 58.
    Sapolsky R.M., Krey L.C., Mc Ewen B.S.: The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr. Rev. 7: 284–301, 1986.PubMedCrossRefGoogle Scholar
  59. 59.
    Ohashi M., Kato K., Nawata H., Ibayashi H.: Adrenocortical responsiveness to graded ACTH infusions in normal young and elderly human subjects. Gerontology 32: 43–51, 1986.PubMedCrossRefGoogle Scholar
  60. 60.
    Spath-Schwalbe E., Fehm H.L., Born J., Pfeiffer E.F.: Combined corticotropin- releasing hormone- vasopressin test: a new test for the evaluation of the pituitary adrenal system. Horm. Metab. Res. 19: 665–666, 1987.PubMedCrossRefGoogle Scholar
  61. 61.
    Blichert-Toft M.: Secretion of corticotrophin and somatotrophin by the senescent adenohypophysis in man. Acta Endocrinol. (Copenh.) 78 (Suppl): 1, 1975.Google Scholar
  62. 62.
    Hess G.D., Riegle G.D.: Effects of chronic ACTH stimulation on adrenocortical function in young and aged rats. Am. J. Physiol. 222: 1458–1461, 1972.PubMedGoogle Scholar
  63. 63.
    Riegle G.D.: Chronic stress effects on adrenocortical responsiveness in young and aged rats. Neuroendocrinology 11: 1–10, 1973.PubMedCrossRefGoogle Scholar
  64. 64.
    Ball M.J., Hachinski V., Fox A., Kirshen A.J., Fisman M., Blume W., Kral V.A., Fox H., Merskey H.: A new definition of Alzheimer’s disease: a hippocampal dementia. Lancet I: 14–16, 1985.CrossRefGoogle Scholar
  65. 65.
    Hyman B.T., Van Hoesen G.W., Damasio A.R., Barnes C.L.: Alzheimer’s disease: cell- specific pathology isolates the hippocampal formation. Science 225: 1168–1170, 1984.PubMedCrossRefGoogle Scholar
  66. 66.
    Raskind U., Peshinel E., Rivard U.F., Veith R., Barnes R.: Dexamethasone suppression test and cortisol circadian rhythm in primary degenerative dementia. Am. J. Psychiatry 148: 66–69, 1982.Google Scholar
  67. 67.
    Ferrier I.N., Pascual J., Charlton B.G.: Cortisol, ACTH and dexamethasone concentrations in a psychogeriatric population. Biol. Psychiatry 23: 252–260, 1988.PubMedCrossRefGoogle Scholar
  68. 68.
    Greenwald B., Mathe A., Mohs R., Levy M., Johns C., Davis K.: Cortisol in Alzheimer’s disease. II. Dexamethasone suppression, dementia severity and affective symptoms. Am. J. Psychiatry 143: 442–446, 1986.PubMedGoogle Scholar
  69. 69.
    Sapolsky R.M., Mc Ewen B.S.: Glucocorticoids and neuropathologic insults to the brain. In: Grook T., Bartus R. (Eds.), Treatment, Development Strategies for Alzheimer’s Disease. Academic Press, New York, 1987.Google Scholar
  70. 70.
    Radke J.M., Vincent S.R.: Effects of systemic and icv cysteamine on Dex suppression of corticosterone levels in the rat. Neuroendocrinology 48: 258–263, 1988.PubMedCrossRefGoogle Scholar
  71. 71.
    Ferrara C., Cocchi D., Müller E.E.: Somatostatin in the hippocampus mediates the dexamethasone induced suppression of corticosterone secretion in the rat. Neuroendocrinology 53: 428–432, 1991.PubMedCrossRefGoogle Scholar
  72. 72.
    Rubinow D.R., Davis C.L., Post R.M.: Somatostatin in neuropsychiatrie disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 12: S137–S155, 1988.Google Scholar
  73. 73.
    Serby M., Richardson S.B., Rypma B., Twente S., Rotrosen J.P.: Somatostatin regulation of the CRFACTH-cortisol axis. Biol. Psychiatry 21: 971–974, 1986.PubMedCrossRefGoogle Scholar
  74. 74.
    Rudman D.: Growth hormone, body composition and aging. J. Am. Geriatr. Soc. 33: 800–807, 1985.PubMedGoogle Scholar
  75. 75.
    Meites J.: Neuroendocrine biomarkers of aging in the rat. Exp. Gerontol. 23: 349–358, 1988.PubMedCrossRefGoogle Scholar
  76. 76.
    Finkstein J.W., Boyar R.M., Roffwarg H.P., Kream J., Hellman L.: Age- related change in the twenty- four hour spontaneous secretion of growth hormone. J. Clin. Endocrinol. Metab. 35: 665–670, 1972.CrossRefGoogle Scholar
  77. 77.
    Rudman D., Kutner M.H., Rogers CM., Lubin M.F., Flening G.A., Bain R.P. Impaired growth hormone secretion in the adult population: relation to age and adiposity. J. Clin. Invest. 67: 1361–1369, 1981.PubMedCrossRefGoogle Scholar
  78. 78.
    Rudman D., Feller G., Nagraj H.S., Gergans G.A., Lalitha P.Y., Goldberg A.F., Schenlenker R.A., Cohn L., Rudman I.W., Mattson D.E.: Effects of human growth hormone in men over 60 years old. N. Engt. J. Med. 323: 1–6, 1990.CrossRefGoogle Scholar
  79. 79.
    Vance M.L.: Growth hormone for the elderly? N. Engl. J. Med. 323: 52–54, 1990.CrossRefGoogle Scholar
  80. 80.
    Marcus R., Butterfield G., Holloway L., Gilliland L., Baylink D.J., Hintz R.L., Sherman B.M.: Effects of short-term administration of recombinant human growth hormone to elderly people. J. Clin. Endocrinol. Metab. 70: 519–527, 1990.PubMedCrossRefGoogle Scholar
  81. 81.
    Moon H.D., Simpson M.E., Li C.H., Evans H.M.: Neoplasm in rats treated with pituitary growth hormone. I. Pulmonary and lymphatic tissues. Cancer Res. 10: 297–308, 1950.PubMedGoogle Scholar
  82. 82.
    Cullen K.J., Yee D., Sly W.S., Perdue J., Hampton B., Lippman M.E., Rosen N.: Insulin- like growth factor receptor expression and function in human breast cancer. Cancer Res. 50: 48–50, 1990.PubMedGoogle Scholar
  83. 83.
    Locatelli V., Arimura A., Torsello A., Cella S.G., Müller E.E.: Somatostatin-antiserum antagonizes the impaired ability of hpGRF-40 to stimulate growth hormone release in old unanesthetized male rats. Neuroendocrinol. Lett. 6: 261–266, 1984.Google Scholar
  84. 84.
    Panzeri G., Torsello A., Cella S.G., Müller E.E., Locatelli V.: Age -related modulatory activity by a cholinergic agonist on the growth hormone (GH) response to GH- releasing hormone in the rat. Proc. Soc. Biol. Med. 193: 301–305, 1990.CrossRefGoogle Scholar
  85. 85.
    De Gennaro Colonna V., Zoli M., Cocchi D., Maggi A., Manama P., Agnati L.F., Müller E.E.: Reduced growth hormone releasing factor (GHRF)- like immunoreactivity and GHRF gene expression in the hypothalamus of aged rats. Peptides 10: 705–708, 1989.CrossRefGoogle Scholar
  86. 86.
    Parenti M., Dall’Ara A., Rusconi L, Cocchi D., Müller E.E.: Different regulation of growth hormone-releasing factor-sensitive adenylate cyclase in the anterior pituitary of young and aged rats. Endocrinology 121: 1649–1655, 1987.PubMedCrossRefGoogle Scholar
  87. 87.
    Iovino M., Monteleone P., Steardo L.: Repetitive growth hormone releasing hormone administration restores the attenuated growth hormone (GH) response to GH-releasing hormone testing in normal aging. J. Clin. Endocrinol. Metab. 69: 910–916, 1989.PubMedCrossRefGoogle Scholar
  88. 88.
    Morimoto N., Kawakami F., Makino S., Chihara K., Kasegawa M., Ibata Y.: Age- related changes in growth hormone releasing factor and somatostatin in the rat hypothalamus. Neuroendocrinology 47: 459–464, 1988.PubMedCrossRefGoogle Scholar
  89. 89.
    Sonntag W.E. Boyd R.L., Booze R.M.: Somatostatin gene expression in hypothalamus and cortex of aging male rats. Neurobiol. Aging 11: 409–416, 1990.PubMedCrossRefGoogle Scholar
  90. 90.
    Ge F., Tsagarakis S., Rees L.H., Besser G.M., Grossman A.: Relationship between growth hormone- releasing hormone and somatostatin in the rat: effects of age and sex on content and in vitro release from hypothalamic explants. J. Endocrinol. 123: 53–58, 1989.PubMedCrossRefGoogle Scholar
  91. 91.
    Ferrara C, Ceresoli G., Marcozzi C., Cocchi D.: Hypothalamo- pituitary somatostatinergic system in middle -aged female rats. Horm. Metab. Res. 23: 243–244, 1991.PubMedCrossRefGoogle Scholar
  92. 92.
    Locatelli V., Torsello A., Redaelli M., Ghigo E., Massara F., Müller E.E.: Cholinergic agonist and antagonist drugs modulate the growth hormone response to growth hormone releasing hormone in the rat: evidence for mediation by somatostatin. J. Endocrinol. 111: 271–278, 1986.PubMedCrossRefGoogle Scholar
  93. 93.
    Ghigo E., Goffi S., Arvat E., Nicolosi M., Procopio M., Bellone J., Imperiale E., Mazza E., Barachi G., Camanni F.: Pyridostigmine partially restores GH responsiveness to GHRH in normal aging. Acta Endocrinol. (Copenh.) 123: 169–174, 1990.Google Scholar
  94. 94.
    Arce V., Cella S.G., Loche S., Ghigo E., Devesa J., Müller E.E.: Synergistic effect of growth hormone- releasing hormone (GHRH) and clonidine in stimulating GH release in young and old dogs. Brain Res. 537: 359–362, 1990.PubMedCrossRefGoogle Scholar
  95. 95.
    Miki N., Ono M., Shizume K.: Evidence that opiatergic and alpha- adrenergic mechanisms stimulate rat growth hormone release via growth hormone- releasing factor (GRF). Endocrinology 114: 1950–1952, 1984.PubMedCrossRefGoogle Scholar
  96. 96.
    Cella S.G., Moiraghi V., Minuto F., Barreca A., Cocchi D., Müller E.E.: Prolonged fasting or clonidine can restore the defective growth hormone secretion in old dogs. Acta Endocrinol. (Copenh.) 121: 177–184, 1989.Google Scholar
  97. 97.
    Ghigo E., Goffi S., Nicolosi M., Arvat E., Valente F., Mazza E., Ghigo M.C., Camanni F.: Growth hormone responsiveness to combined administration of arginine and GH-releasing hormone does not vary with age in man. J. Clin. Endocrinol. Metab. 71: 1481–1485, 1990.PubMedCrossRefGoogle Scholar
  98. 98.
    O’Steen W., Brodish A.: Neuronal damage in the rat retina after chronic stress. Brain Res. 344: 231–239, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Editrice Kurtis s.r.l. 1992

Authors and Affiliations

  • Daniela Cocchi
    • 1
  1. 1.Department of Biology and PharmacologyUniversity of BariBariItaly

Personalised recommendations