Advertisement

Results in Mathematics

, Volume 42, Issue 1–2, pp 3–8 | Cite as

On Commutativity of Rings With Derivations

  • Mohammad Ashraf
  • Nadeem-ur Rehman
Article

Abstract

Let R be a ring and d : R → R a derivation of R. In the present paper we investigate commutativity of R satisfying any one of the properties (i)d([x,y]) = [x,y], (ii)d(x o y) = xoy, (iii)d(x) o d(y) = 0, or (iv)d(x) o d(y) = x o y, for all x, y in some apropriate subset of R.

Keywords and Phrases

prime rings derivations ideals Lie ideals and commutativity 

1991 Mathematics Subject Classification

16W25 16N60 16U80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Awtar, R., Lie structure in prime rings with derivations, Publ. Math.(Debrecen) 31 (1984), 209–215.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Awtar, R., Lie and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973), 67–74.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Bell, H.E. and Daif, M.N., On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), 443–447.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Bell, H. E. and Martindale, W. S., Centralizing mappings of semiprime rings, Canad.Math. Bull. 30 (1987), 92–101.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Bergen, J., Herstein, I. N. and Kerr, J. W., Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259–267.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Bresar, M., Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans.Amer. Math. Soc. 335 (1993), 525–546.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Bresar, M., Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Daif, M. N. and Bell, H. E., Remarks on derivations on semiprime rings, Internal. J. Math, &: Math. Sci. 15 (1992), 205–206.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Deng, Q. and Ashraf, M., On strong commutativity preserving mappings, Results in Math. 30 (1996), 259–263.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Herstein, I. N., Ring with involution, Univ. Chicago press, Chicago 1976.Google Scholar
  11. [11]
    Herstein, I. N., Topics in ring theory, Univ. Chicago press, Chicago 1969.zbMATHGoogle Scholar
  12. [12]
    Hongan, M., A note on semiprime rings with derivations, Internat. J. Math. & Math. Sci. 20 (1997), 413–415.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Mayne, J.H., Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122–126.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Posner, E. C, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2002

Authors and Affiliations

  • Mohammad Ashraf
    • 1
  • Nadeem-ur Rehman
    • 2
  1. 1.Department of Mathematics Faculty of scienceKing Abdul Aziz UniversityJeddahSaudi-Arabia
  2. 2.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations