Results in Mathematics

, Volume 13, Issue 3–4, pp 338–362 | Cite as

Cubic form Theorem for Affine Immersions

  • Katsumi Nomizu
  • Ulrich Pinkall


Vector Field Fundamental Form Isometric Immersion Affine Connection Affine Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blaschke, W., Differentialgeometrie, Band II, Springer, Berlin, 1923MATHGoogle Scholar
  2. [2]
    Dajczer, M. and Rodriguez, L., Substantial codimension of submanifolds: global results, IMPA preprint 1986Google Scholar
  3. [3]
    Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 338–340MathSciNetGoogle Scholar
  4. [4]
    Ferus, D., Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81–93MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Klingenberg, W., Über das Einspannungsproblem in der projektiven und affinen Differentialgeometrie, Math. Z. 55 (1952), 321–345MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Nomizu, K. and Pinkall U., On a certain class of homogeneous projectively flat manifolds, SFB/MPI Preprint 85/44; to appear in Tohoku Math J.Google Scholar
  7. [7]
    Nomizu, K. and Pinkall U., On the geometry of affine immersions, MPI Preprint 86-28, to appear in Math.Z.Google Scholar
  8. [8]
    Simon, U., Zur Relativgeometrie: Symmetrische Zusammenhänge auf Hyperflächen, Math. Z. 106(1968), 36–46 [ai]9]_Simon, U., Zur Entwicklung der affinen Differentialgeometrie nach Blaschke, Gesammelte Werke Blaschke, Band 4, Thales Verlag, Essen, 1985MathSciNetMATHCrossRefGoogle Scholar
  9. [10]
    Spivak, M., A Comprehensive Introduction to Differential Geometry, Vol. 5, Publish or Perish Inc. 1975Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1988

Authors and Affiliations

  • Katsumi Nomizu
    • 1
  • Ulrich Pinkall
    • 2
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA
  2. 2.TU BerlinBerlin 12

Personalised recommendations