Results in Mathematics

, Volume 18, Issue 1–2, pp 120–124 | Cite as

An Elementary Proof of a Formula of Kuznecov for Kloosterman Sums

  • Roland Matthes


Direct Consequence Fourier Coefficient Elementary Proof Mass Form Simultaneous Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Estermann, T., On Kloosterman’s sum, Mathematika 8 (1961), 83–86.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Geissler, E., Kloosterman-Summen und holomorphe Modularformen für Hecke-Kongruenzgruppen. Diplomarbeit im Fachbereich Mathematik der Universität Hannover (1988).Google Scholar
  3. [3]
    Kuznecov, N.V., Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloosterman sums, Math. USSR Sbornik 39, (1981), no. 3, 299–342.CrossRefGoogle Scholar
  4. [4]
    Selberg, A., Über die Fourierkoeffizienten elliptischer Modulformen negativer Dimension, C.R. Neuviéme Congres Math. Scandinaves, Helsingfors (1938), 320–322, reprinted in: Collected papers 1, no. 3.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1990

Authors and Affiliations

  • Roland Matthes
    • 1
  1. 1.Fachbereich Mathematik der Gesamthochschule KasselKasselFR Germany

Personalised recommendations