Results in Mathematics

, Volume 41, Issue 3–4, pp 346–360 | Cite as

The Metric Completion of Convex Sets and Modules

  • Dieter Pumplün


A convex module is a set closed under convex combinations but not necessarily a subset of a linear space. Convex modules are a natural generalization of convex sets in linear spaces. Any-convex module has a canonical semimetric and there is a universal affine mapping into a convex set, complete in this metric. This completion is the base of a base normed Banach space.

AMS subject classification

52 A 05 52 A 01 46 B 40 46 A 55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bauer, H., and Bear, H.S., The part metric in convex sets, Pac. J. Math. 30, 15–33, (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Bear, H.S., and Weiss, M.L., An intrinsic metric for parts, Proc. AMS 18, 812–817, (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Börger, R., and Kemper, R., A cogenerator for preseparated superconvex spaces, Appl. Cat. Str. 4, 361–370 (1996).zbMATHCrossRefGoogle Scholar
  4. [4]
    Flood, J., Semiconvex Geometry, J. Austral. Math. Soc. 30, 496–510 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Gudder, S., Convex structures and operational quantum mechanics, Comm. math. Phys. 29, 249–264 (1973).MathSciNetCrossRefGoogle Scholar
  6. [6]
    Gudder, S.P., Convexity und Mixtures, SIAM Rev. 19, 221–240 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Jameson, G., Ordered linear spaces, LN Mathematics 141, Springer, 1970.Google Scholar
  8. [8]
    Jameson, G.J.O., Convex series, Proc. Camb. Phil. Soc. 72, 37–47 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    König, H., and Wittstock, G., Superconvex spaces and superconvex sets and the embedding of convex and superconvex space, Note di Math. vol. X, Suppl. no. 2, 343–362 (1990).Google Scholar
  10. [10]
    Krause, U., Superconvexity and part completeness, Seminarberichte, FB Mathematik, FernUniversität. Bd. 63, 3, 427–438 (1998).Google Scholar
  11. [11]
    Lifshits, E.A., Ideally convex sets, Functional Anal. Appl. 4, 330–331 (1970), orig. paper in Functional Anal. i. Prilozen 3, no. 1, 86-88 (1969).zbMATHCrossRefGoogle Scholar
  12. [12]
    Pumplün, D., and Röhrl, H., Banach spaces and totally convex spaces I, Comm. in Alg. 12, 953–1019 (1985).CrossRefGoogle Scholar
  13. [13]
    Pumplün, D., and Röhrl, H., Banach spaces and totally convex spaces II, Comm. in Alg. 13, 1047–1113 (1985).zbMATHCrossRefGoogle Scholar
  14. [14]
    Pumplün, D., Banach spaces and superconvex modules, Symp. Gaussiana, de Gruyter, Ed. Behara, Fritsch, Lintz, 323–338 (1995).Google Scholar
  15. [15]
    Pumplün, D., and Röhrl, H., The Eilenberg-Moore algebras of base normed vector spaces, Proc. Symp. Cat. Top., Univ. Cape Town 1994, 187-200 (1999).Google Scholar
  16. [16]
    Pumplün, D., and Röhrl, H., Convexity theories IV, Klein-Hilbert parts in convex modules, Appl. Cat. Str. 3, 173–200 (1995).zbMATHCrossRefGoogle Scholar
  17. [17]
    Pumplün, D., Absolutely convex modules and Saks spaces, J. Pure Appl. Alg. 155, 257–270 (2001).zbMATHCrossRefGoogle Scholar
  18. [18]
    Pumplün, D., The universal compactification of topological convex sets and modules, J. Conv. Anal., Vol. 8, Ni. 1, 1–13 (2001).Google Scholar
  19. [19]
    Semadeni, Z., Categorical methods in convexity, Proc. Coll. Convex. Copenhagen 1965, 281-307 (1967).Google Scholar
  20. [20]
    Stone, M.H., Postulates for the Barycentric Calculus, Annali di Matematica XXXIX, 25–30 (1949).CrossRefGoogle Scholar
  21. [21]
    Swirszcz, T., Monadic Functors and Categories of Convex Sets, Inst. Math., Polish Acad. Sci., Preprint 70 (1975).Google Scholar
  22. [22]
    Von Neumann, J. and Morgenstern, O.: Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1947.zbMATHGoogle Scholar
  23. [23]
    Wong, Y.-C., and Ng, K.-F., Partially ordered topological vector spaces, Clarendon, Oxford (1973).zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2002

Authors and Affiliations

  • Dieter Pumplün
    • 1
  1. 1.Fachbereich MathematikFernUniversitätHagenGermany

Personalised recommendations