Results in Mathematics

, Volume 38, Issue 1–2, pp 72–87 | Cite as

Compact connected translation generalized quadrangles



We prove that the topological kernel of a compact connected translation generalized quadrangle is topologically isomorphic to ℝ or ℂ. Moreover, it turns out that the unique orthogonal quadrangle over ℂ is the only compact connected translation generalized quadrangle whose topological kernel is isomorphic to ℂ.

AMS Subject Classification (1991)

51H10 (51E12) 

Key Words

topological incidence geometry generalized quadrangles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Bödi and L. Kramer, On homomorphisms between generalized polygons, Geom. Dedicata 58 (1995), no. 1, 1–14.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    T. Buchanan, Ovale und Kegelschnitte in der komplexen projektiven Ebene, Math.-Phys. Semesterber. 26 (1979), 244–260.MathSciNetMATHGoogle Scholar
  3. [3]
    T. Buchanan, H. Hähl, and R. Löwen, Topologische Ovale, Geom. Dedicata 9 (1980), 401–424.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    F. Buekenhout (ed.), Handbook of incidence geometry, North-Holland, 1995.Google Scholar
  5. [5]
    K. Burns and R. Spatzier, On topological Tits buildings and their classification, Publ. Math. IHES 65 (1987), 5–34.MathSciNetMATHGoogle Scholar
  6. [6]
    R. Engelking, General topology, Heldermann, Berlin, 1992.Google Scholar
  7. [7]
    M. Forst, Topologische 4-Gone, Mitt. Math. Sem. Giessen 147 (1981), 65–129.MathSciNetGoogle Scholar
  8. [8]
    F. G. Frobenius, Über lineare Substitutionen und bilineare Formen, J. Reine Angew. Math. 84 (1878), 1–63.CrossRefGoogle Scholar
  9. [9]
    T. Grundhöfer, M. Joswig, and M. Stroppel, Slanted symplectic quadrangles, Geom. Dedicata 49 (1994), no. 2, 143–154, [= TH Darmstadt Preprint Nr. 1526].MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    T. Grundhöfer and N. Knarr, Topology in generalized quadrangles, Top. Appl. 34 (1990), 139–152.MATHCrossRefGoogle Scholar
  11. [11]
    T. Grundhöfer, N. Knarr, and L. Kramer, Flag-homogeneous compact connected polygons, Geom. Dedicata 55 (1995), no. 1, 95–114.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    T. Grundhöfer and R. Löwen, Linear topological geometries, In Buekenhout [4], pp. 1255–1324.Google Scholar
  13. [13]
    E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer, 1963.Google Scholar
  14. [14]
    M. Joswig, Translationsvierecke, PhD Thesis, Universität Tübingen, 1994.Google Scholar
  15. [15]
    M. Joswig, Translation generalized quadrangles, Arch. Math. (Basel) 67 (1996), no. 3, 253–264, [= RISC Technical Report No. 96-20].MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Joswig, Pseudo-ovals, elation Laguerre planes, and translation generalized quadrangles, Beiträge Algebra Geom. (to appear).Google Scholar
  17. [17]
    W. M. Kantor, Some generalized quadrangles with parameters q2, q, Math. Z. 192 (1986), 45–50.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    N. Knarr, The nonexistence of certain topological polygons, Forum Math. 2 (1990), 603–612.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    N. Knarr, Translation planes — Foundations and construction principles, Springer, 1995.Google Scholar
  20. [20]
    L. Kramer, Compact polygons, PhD Thesis, Universität Tübingen, 1994.Google Scholar
  21. [21]
    L. Kramer, Compact polygons and isoparametric hypersurfaces, Birkhäuser, to appear.Google Scholar
  22. [22]
    R. Löwen, Topological pseudo-ovals, elation Laguerre planes and elation generalized quadrangles, Math. Z. 216 (1994), no. 3, 347–369.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    R. Löwen and U. Pfüller, Two-dimensional Laguerre planes with large automorphism groups, Geom. Dedicata 23 (1987), 87–96.MathSciNetMATHGoogle Scholar
  24. [24]
    H. Lüneburg, Translation planes, Springer, 1980.Google Scholar
  25. [25]
    S. E. Payne and J. A. Thas, Finite generalized quadrangles, Pitman, 1984.Google Scholar
  26. [26]
    H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel, Compact projective planes, De Gruyter, Berlin, 1995.CrossRefGoogle Scholar
  27. [27]
    A. E. Schroth, Topological circle planes and topological quadrangles, Pitman, 1995.Google Scholar
  28. [28]
    G. F. Steinke, Topological circle geometries, In Buekenhout [4], pp. 1325–1354.Google Scholar
  29. [29]
    J. Szenthe, On the topological characterization of transitive Lie group actions, Acta Sci. Math (Szeged) 36 (1974), 323–344.MathSciNetMATHGoogle Scholar
  30. [30]
    J. A. Thas, Translation 4-gonal configurations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974), 303–314.MathSciNetMATHGoogle Scholar
  31. [31]
    H. Van Maldeghem, Quadratic quaternary rings with valuation and affine buildings of type \({\tilde C}_2\), Mitt. Math. Sem. Giessen 189 (1989), 1–159.Google Scholar
  32. [32]
    H. Van Maldeghem, Generalized polygons, Birkhäuser, 1998.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2000

Authors and Affiliations

  1. 1.Fachbereich Mathematik, Sekr. 7-1Technische Universität BerlinBerlinGermany

Personalised recommendations