Results in Mathematics

, Volume 19, Issue 1–2, pp 89–109 | Cite as

On spectral properties of regular quasidefinite pencils F-λG

  • Heinz Langer
  • Albert Schneider
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AEO]
    Atkinson, F. V., W. N. Everitt, K. S. Ong: On the m-coefficient of Weyl for a differential equation with an indefinite weight function. Proc. London Math. Soc. 29, 368–384 (1974)MathSciNetCrossRefMATHGoogle Scholar
  2. [AI]
    Azizov, T. Ya., I. S. Iokhvidov: Linear operators in spaces with an indefinite metric. John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapure, 1989MATHGoogle Scholar
  3. [B]
    Bognár, J.: Indefinite inner product spaces. Springer Verlag, Berlin-Heidelberg-New York, 1974CrossRefMATHGoogle Scholar
  4. [D]
    Dijksma, A.: Eigenfunction expansion for a class of J-selfadjoint ordinary differential operators with boundary conditions containing the eigenvalue parameter. Proc. Roy. Soc. Edinburgh, 86A, 1–27 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. [DL]
    Daho, K., H. Langer: Sturm-Liouville operators with an indefinite weight function. Proc. Roy. Soc. Edinburgh, 78A, 161–191 (1977)MathSciNetMATHGoogle Scholar
  6. [DLS]
    Dijksma, A., H. Langer, H. de Snoo: Symmetric Sturm-Liouville operators with eigenvalue depending boundary conditions. CMS Conference Proceedings, Vol 8: Oscillation, Bifurcation, Chaos, 87–116 (1987)Google Scholar
  7. [F]
    Fulton, C. T.: Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Roy. Soc. Edingburgh, 77A, 293–308 (1977)MathSciNetCrossRefMATHGoogle Scholar
  8. [IS]
    Ibrahim, R., B. D. Sleeman: A regular leftdefinite eigenvalue problem with eigenvalue parameter in the boundary conditions. Lecture Notes in Mathematics, 846, Proceedings, Dundee 1980, 158–167 (1981)Google Scholar
  9. [L]
    Langer, H.: Spectral functions of definitizable operators in Krein spaces. Lecture Notes in Mathematics, 948, Proceedings, Dubrovnik 1981, 1–46 (1982)MATHGoogle Scholar
  10. [S]
    Schäfke, F. W.: Charakterisierung “kompakter” hermitescher Operatoren. Math. Ann. 262, 383–390 (1983)MathSciNetCrossRefMATHGoogle Scholar
  11. [SS1]
    Schäfke, F. W. und A. Schneider: S-hermitesche Rand-Eigenwertprobleme. I. Math. Ann., 162, 9–26, (1965)MathSciNetCrossRefMATHGoogle Scholar
  12. [SS2]
    Schäfke, F. W. und A. Schneider; S-hermitesche Rand-Eigenwertprobleme. II. Math. Ann. 165, 236–260, (1966)MathSciNetCrossRefMATHGoogle Scholar
  13. [Wa]
    Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 133, 301–312 (1973)MathSciNetCrossRefMATHGoogle Scholar
  14. [Wi]
    Wielandt, H.: Über die Eigenwertaufgaben mit reellen diskreten Eigenwerten. Math. Nachr. 4, 308–314 (1951)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1991

Authors and Affiliations

  • Heinz Langer
    • 1
  • Albert Schneider
    • 2
  1. 1.Fachbereich MathematikUniversität RegensburgRegensburg
  2. 2.Fachbereich MathematikUniversität Dortmund

Personalised recommendations