Results in Mathematics

, Volume 34, Issue 1–2, pp 132–149 | Cite as

Discriminants and Functions of the Second Kind of Orthogonal Polynomials

Research article


We consider the problem of evaluating discriminants of general orthogonal polynomials. It is shown that for a general class of weight functions, the functions of the second kind and the orthogonal polynomials are linear independent solutions of the same second order differential equation. We derive a linear fourth-order differential equation satisfied by the numerator polynomials and give two additional linear independent solutions.

1991 Mathematics Subject Classification

42C05 33C45 

Key words and phrases

Discriminants orthogonal polynomials zeros functions of the second kind recurrence relations differential equations raising and lowering operators finite dimensional Lie algebras numerator polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, English translation, Oliver and Boyd, Edinburgh, 1965.MATHGoogle Scholar
  2. [2]
    F. V. Atkinson and W. N. Everitt, Orthogonal polynomials which satisfy second order differential equations. In: E.B. Christoffel, the Influence of His Work on Mathematics and Physical Sciences, edited by Butzer, P. and Fehér, F., pp. 173–181, Burkhäuser Verlag, Basel, 1981.Google Scholar
  3. [3]
    W. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approximation Theory 63 (1990), 225–237.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S.S. Bonan and D.S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approximation Theory 63 (1990), 210–224.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Y. Chen and M. E. H. Ismail, Ladder operators and differential equations for orthogonal polynomials, J. Phys. A 30 (1997), 7818–7829.MathSciNetGoogle Scholar
  6. [6]
    L. E. Dickson, New Course on the Theory of Equations, Wiley, New York, 1939.MATHGoogle Scholar
  7. [7]
    I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser Boston, Boston, 1994.CrossRefMATHGoogle Scholar
  8. [8]
    D. Hubert, Über die Discriminante der in Endlichen abbrechenden hypergeometrischen Reihe, J. für die Reine und Angewandte Matematik 103 (1888), 337–345.MATHGoogle Scholar
  9. [9]
    M. E. H. Ismail, J. Letessier, G. Valent and J. Wimp, Two families of associated Wilson polynomials, Canadian J. Math., 42 (1990), 659–695.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. E. H. Ismail and M. Rahman, Associated Askey-Wilson polynomials, Transactions Amer. Math. Soc. 328 (1991), 201–239.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Jacobson, Basic Algebra I, Freeman and Company, San Francisco, 1974.MATHGoogle Scholar
  12. [12]
    N. Kamran and P. J. Olver, Lie algebras of differential operators and Lie-algebraic potentials, J. Math. Anal. Appl. 145 (1990), 342–356.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    W. Miller, Lie Theory and Special Functions, Academic Press, New York, 1968.MATHGoogle Scholar
  14. [14]
    W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, second edition, Springer-Verlag, Berlin, 1990.MATHGoogle Scholar
  15. [15]
    E. D. Rainville, Special Functions, Chelsea, Bronx, 1971.MATHGoogle Scholar
  16. [16]
    I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, J. für die Reine und Angewandte Matematik, 165 (1931), 52–58.MathSciNetMATHGoogle Scholar
  17. [17]
    J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J. 5 (1939), 401–417.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. Shohat and J. D. Tamarkin, The Problem of Moments, revised edition, American Mathematical Society, Providence, 1950.MATHGoogle Scholar
  19. [19]
    T. J. Stieltjes, Sur quelques théorèmes d’algèbre, Comptes Rendus de l’Academie des Sciences, Paris 100 (1885), 439–440; ∄uvres Complètes, Volume 1, pp. 440-441.MATHGoogle Scholar
  20. [20]
    T. Stieltjes, Sur les polynômes de Jacobi, Comptes Rendus de l’Academie des Sciences, Paris 100 (1885), 620–622; ∄uvres Complètes, Volume 1, pp. 442-444.MATHGoogle Scholar
  21. [21]
    G. Szegő, Orthogonal Polynomials, Fourth Edition, Amer. Math. Soc, Providence, 1975.MATHGoogle Scholar
  22. [22]
    J. Wimp, Explicit formulas for the associated Jacobi polynomials, Canadian J. Math. 39 (1987), 893–1000.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1998

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of South Florida TampaFloridaUSA

Personalised recommendations