Results in Mathematics

, Volume 37, Issue 3–4, pp 335–344 | Cite as

The Reuleaux Triangle and its Center of Mass

  • Winfried Gleiftner
  • Herbert Zeitler
Research article


Engineers asked some questions concerning an instrument to drill square holes. In this paper their questions are answered.


Reuleaux triangle center of gravity remaining area (n + 2)-holes with nN. 

Math. Subject Classification

51N05 51N20 68U05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. Bibliography

  1. [Blasl5]
    Blaschke W.: Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math. Ann. 76 (1915), 504–513, also in: Gesammelte Werke vol 3 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [Dark74]
    Dark H. E.: The Wankel Rotary Engine: Introduction and Guide. Bloomington, IN: Indiana University Press, 1974.Google Scholar
  3. [Epps]
  4. [Gardner63]
    Gardner M.: Mathematical Games: Curves of Constant Width, one of which makes it possible to Drill square Holes. Scientific American 208 (February): 148-156.Google Scholar
  5. [Gray97]
    Gray A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. Boca Raton, FL: CRC Press, pp. 176–177, 1997.Google Scholar
  6. [Rade90]
    Rademacher H., Toplitz O.: The Enjoyment of Mathematics. New York, Dover Publications, 1990 (first German edition 1933).zbMATHGoogle Scholar
  7. [Redr]
  8. [ReTr]
  9. [Reul63]
    Reuleaux F.: The Kinematics of Machinery. New York, Dover Publications, 1963.Google Scholar
  10. [Reull876]
    Reuleaux F.: The Kinematics of Machinery: Outlines of a Theory of Machines. London, MacMillan, 1876.Google Scholar
  11. [Wagon91]
    Wagon S.: Mathematica in Action. New York: W. H. Freeman, pp.52–54 and 381-383, 1991.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2000

Authors and Affiliations

  1. 1.FH-LandshutLandshut
  2. 2.Mathematisches InstitutUniversitat BayreuthBayreuth

Personalised recommendations