The Journal of the Astronautical Sciences

, Volume 58, Issue 2, pp 167–194 | Cite as

A Dynamical Systems Analysis of Resonant Flybys: Ballistic Case

  • Rodney L. Anderson
  • Martin W. Lo


In this analysis, resonant flybys were explored within the context of the circular restricted three-body problem using dynamical systems theory. The first step in this process involved the construction of a flyby trajectory continuously transiting between 3:4 and 5:6 resonances in the Jupiter-Europa circular restricted three-body problem. An examination of this trajectory revealed that it followed the invariant manifolds of resonant orbits during these transitions. It was discovered that these transitions occurred for specific energies where the invariant manifolds of the 3:4 and 5:6 resonant orbits were closely related. The potential of the information obtained from this analysis for use in mission design was demonstrated by developing resonance transition trajectories using resonant orbit homoclinic and heteroclinic connections.


Invariant Manifold Unstable Manifold Stable Manifold Jacobi Constant Mission Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LEXELL, A.J. and EULER, L. Recherches et calculs sur la vraie orbite elliptique de la comète de l’an 1769. St Pétersbourg: De l’impr. de l’Academie imperiale des sciences, 1770.Google Scholar
  2. [2]
    LEXELL, A.J. Reflexions sur le temps périodique des comètes en général et principalement sur celui de la cométe observée en 1770. 1772.Google Scholar
  3. [3]
    LEXELL, A.J. “Recherches sur la période de la comète, observée en 1770, d’après les observations de M. Messier,” Histoire de l’Académie Royale des Sciences, mémoires, année 1776, 1779, pp. 638–651.Google Scholar
  4. [4]
    LAPLACE, P.S. Traité de Mécanique Céleste, Vol. 4. Paris: Courcier, 1805.Google Scholar
  5. [5]
    LE VERRIER, U.J. “Theorie de la Comete Periodique de 1770,” Annales de l’Observatoire de Paris, Vol. 3, 1857, pp. 203–270.Google Scholar
  6. [6]
    D’ALEMBERT, J. Opuscules Mathématiques, Vol. 6, Chez Briasson, Paris, 1773.Google Scholar
  7. [7]
    TISSERAND, F. “Sur la Théorie de la Capture des Comètes Périodiques,” Bulletin Astronomique, Vol. 6, June 1889, pp. 241–257.Google Scholar
  8. [8]
    TISSERAND, F. Traité de la Mécanique Céleste: Théories des Satellites de Jupiter et de Saturne Perturbations des Petites Planétes, Vol. 4, Gauthier-Villars, Paris, 1896.Google Scholar
  9. [9]
    MINOVITCH, M.A. “A Method for Determining Interplanetary Free-Fall Reconnaissance Trajectories,” Technical Memo 312-130, Jet Propulsion Laboratory, August 1961.Google Scholar
  10. [10]
    MINOVITCH, M.A. “The Determination and Characteristics of Ballistic Interplanetary Trajectories under the Influence of Multiple Planetary Attractions,” Technical Report 32-464, Jet Propulsion Laboratory, October 1963.Google Scholar
  11. [11]
    STURMS, F. M. and CUTTING, E. “Trajectory Analysis of a 1970 Mission to Mercury via a Close Encounter with Venus,” Technical Report 32-943, Jet Propulsion Laboratory, May 1966.Google Scholar
  12. [12]
    FLANDRO, G.A. “Fast Reconnaissance Missions to the Outer Solar System Utilizing Energy Gained from the Gravitational Field of Jupiter,” Astronautica Acta, Vol. 12, No. 4, 1966.Google Scholar
  13. [13]
    STRANGE, N.J. and LONGUSKI, J.M. “Graphical Method for Gravity-Assist Trajectory Design,” Journal of Spacecraft and Rockets, Vol. 39, January–February 2002, pp. 9–16.CrossRefGoogle Scholar
  14. [14]
    OKUTSU, M., DEBBAN, T.J., and LONGUSKI, J.M. “Tour Design Strategies for the Europa Orbiter Mission,” presented as paper AAS 01-463 at the AAS/AIAA Astrodynamics Specialist Conference, July 30–August 2 2001.Google Scholar
  15. [15]
    BOLLT, E. and MEISS, J.D. “Targeting Chaotic Orbits to the Moon through Recurrence,” Physics Letters A, Vol. 204, August 28 1995, pp. 373–378.CrossRefGoogle Scholar
  16. [16]
    SCHROER, C.G. and OTT, E. “Targeting in Hamiltonian Systems that have Mixed Regular/Chaotic Phase Spaces,” Chaos, Vol. 7, December 1997, pp. 512–519.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    BELBRUNO, E. and MARSDEN, B. “Resonance Hopping in Comets,” Astronomical Journal, Vol. 113, No. 4, 1997, pp. 1433–1444.CrossRefGoogle Scholar
  18. [18]
    LO, M. and ROSS, S. “Low Energy Interplanetary Transfers Using Invariant Manifolds of LI, L2, and Halo Orbits,” Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Monterey, California, February 9–11 1998.Google Scholar
  19. [19]
    KOON, W.S., LO, M.W., MARSDEN, J.E., and ROSS, S.D. “Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics,” Chaos, Vol. 10, June 2000, pp. 427–469.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    HOWELL, K.C., MARCHAND, B., and LO, M.W. “Temporary Satellite Capture of Short-Period Jupiter Family Comets from the Perspective of Dynamical Systems,” The Journal of the Astronautical Sciences, Vol. 49, October–December 2001, pp. 539–557.MathSciNetGoogle Scholar
  21. [21]
    LO, M.W., ANDERSON, R.L., WHIFFEN, G., and ROMANS, L. “The Role of Invariant Manifolds in Low Thrust Trajectory Design (Part I),” presented as paper AAS 04-288 at the AAS/AIAA Spaceflight Dynamics Conference, Maui, Hawaii, February 8–12, 2004.Google Scholar
  22. [22]
    ANDERSON, R.L. and LO, M.W. “The Role of Invariant Manifolds in Low Thrust Trajectory Design (Part II),” presented as paper AIAA 2004-5305 at the AIAA/AAS Astrodynamics Specialist Conference, Providence, Rhode Island, August 16–19, 2004.Google Scholar
  23. [23]
    LO, M.W., ANDERSON, R.L., LAM, T., and WHIFFEN, G. “The Role of Invariant Manifolds in Low Thrust Trajectory Design (Part III),” presented as paper AAS 06-190 at the AAS/AIAA Astrodynamics Specialist Conference, Tampa, Florida, January 22–26, 2006.Google Scholar
  24. [24]
    ANDERSON, R.L. and LO, M.W. “Role of Invariant Manifolds in Low-Thrust Trajectory Design,” Journal of Guidance, Control, and Dynamics, Vol. 32, November–December 2009, pp. 1921–1930.CrossRefGoogle Scholar
  25. [25]
    ANDERSON, R.L. and LO, M.W. “Dynamical Systems Analysis of Planetary Flybys and Approach: Planar Europa Orbiter,” Journal of Guidance, Control, and Dynamics, Vol. 33, November–December 2010, pp. 1899–1912.CrossRefGoogle Scholar
  26. [26]
    ANDERSON, R.L. Low Thrust Trajectory Design for Resonant Flybys and Captures Using Invariant Manifolds, Ph.D. Dissertation, University of Colorado at Boulder,∼rla/papers/andersonphd.pdf, 2005.
  27. [27]
    SZEBEHELY, V. Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, New York, 1967.Google Scholar
  28. [28]
    ROY, A.E. Orbital Motion, Adam Hilger, Philadelphia, Pennsylvania, Third Ed., 1988.zbMATHGoogle Scholar
  29. [29]
    MURRAY, CD. and DERMOTT, S.F. Solar System Dynamics, Cambridge University Press, Cambridge, United Kingdom, 1999.zbMATHGoogle Scholar
  30. [30]
    BARRABÉS, E. and GÓMEZ, G. “Three-Dimensional p-q Resonant Orbits Close to Second Species Solution,” Celestial Mechanics and Dynamical Astronomy, Vol. 85, 2003, pp. 145–174.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    HOWELL, K.C. and BREAKWELL, J.V. “Three-Dimensional, Periodic, ‘Halo’ Orbits,” Celestial Mechanics, Vol. 32, 1984, pp. 53–71.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    MASDEMONT, J. and MONDELO, J.M. “Notes for the Numerical and Analytical Techniques Lectures (draft version),” Advanced Topics in Astrodynamics Summer Course, Barcelona, July, 2004, July 2004.Google Scholar
  33. [33]
    WIGGINS, S. “Introduction to Applied Nonlinear Dynamical Systems and Chaos,” Vol. 2 of Texts in Applied Mathematics. Second Ed., New York: Springer-Vertag, 2003.Google Scholar
  34. [34]
    PARKER, T. and CHUA, L.O. Practical Numerical Algorithms for Chaotic Systems, Springer-Veriag, New York, 1989.zbMATHCrossRefGoogle Scholar
  35. [35]
    JOHANNESEN, J.R. and D’AMARIO, L.A. “Europa Orbiter Mission Trajectory Design,” presented as paper AAS 99-360 at the AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, August 16–19, 1999.Google Scholar
  36. [36]
    WILSON, R.S. “Derivation of Differential Correctors Used in GENESIS Mission Design,” IOM 312.1-03-002, Jet Propulsion Laboratory, 2003.Google Scholar
  37. [37]
    PERNICKA, H.J. “The Numerical Determination of Lissajous Orbits in the Circular Restricted Three-Body Problem,” Master’s Thesis, Purdue University, December 1986.Google Scholar
  38. [38]
    ANDERSON, R.L., LO, M.W., and BORN, G.H. “Application of Local Lyapunov Exponents to Maneuver Design and Navigation in the Three-Body Problem,” presented as paper AAS 03-569 at the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Montana, August 3–7, 2003.Google Scholar

Copyright information

© American Astronautical Society, Inc. 2011

Authors and Affiliations

  • Rodney L. Anderson
    • 1
  • Martin W. Lo
    • 2
  1. 1.The Colorado Center for Astrodynamics Research, Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA
  2. 2.High Capability Computing and Modeling Group, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations