Bloch’s Principle



A heuristic principle attributed to André Bloch says that a family of holomorphic functions is likely to be normal if there are no non-constant entire functions with this property. We discuss this principle and survey recent results that have been obtained in connection with it. We pay special attention to properties related to exceptional values of derivatives and existence of fixed points and periodic points, but we also discuss some other instances of the principle.


Normal family quasinormal Zalcman Lemma exceptional value fixed point periodic point 

2000 MSC

30D45 30D20 30D35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Ahlfors, Sur une généralisation du théorème de Picard, C. R. Acad. Sci. Paris 194 (1932), 245–247; Collected Papers, Birkhäuser, Boston, Basel, Stuttgart, 1982, Vol. I, 145–147.Google Scholar
  2. 2.
    L. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157–194; Collected Papers, Vol. I, 214–251.CrossRefMathSciNetGoogle Scholar
  3. 3.
    I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615–622.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Bargmann and W. Bergweiler, Periodic points and normal families, Proc. Amer. Math. Soc. 129 (2001), 2881–2888.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. F. Beardon, Iteration of Rational Functions, Springer, New York, Berlin, Heidelberg, 1991.Google Scholar
  6. 6.
    W. Bergweiler, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), 57–72.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    W. Bergweiler, Periodische Punkte bei der Iteration ganzer Funktionen, Habilitationsschrift, Rheinisch-Westfälische Techn. Hochsch., Aachen 1991.Google Scholar
  8. 8.
    W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N. S.) 29 (1993), 151–188.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    W. Bergweiler, A new proof of the Ahlfors five islands theorem, J. Analyse Math. 76 (1998), 337–347.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Bergweiler, The role of the Ahlfors five islands theorem in complex dynamics, Conform. Geom. Dyn. 4 (2000), 22–34.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    W. Bergweiler, Normality and exceptional values of derivatives, Proc. Amer. Math. Soc. 129 (2001), 121–129.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    —, Quasinormal families and periodic points, in: M. Agranovsky, L. Karp and D. Shoikhet (eds.), Complex Analysis and Dynamical Systems II, Nahariya, 2003, Contemp. Math. 382 (2005), 55–63.Google Scholar
  13. 13.
    W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    W. Bergweiler and J. K. Langley, Nonvanishing derivatives and normal families, J. Analyse Math. 91 (2003), 353–367.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    W. Bergweiler and J. K. Langley, Multiplicities in Hayman’s alternative, J. Australian Math. Soc. 78 (2005), 37–57.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Bloch, La conception actuelle de la théorie des fonctions entières et méromorphes, Enseignement Math. 25 (1926), 83–103.MATHGoogle Scholar
  17. 17.
    A. Bloch, Les fonctions holomorphes et méromorphes dans le cercle-unité, Gauthiers-Villars, Paris, 1926.MATHGoogle Scholar
  18. 18.
    A. Bloch, Les syst`emes de fonctions holomorphes a variétés linéaires lacunaires, Ann. École Norm. Sup. 43 (1926), 309–362.MATHMathSciNetGoogle Scholar
  19. 19.
    A. Bloch, Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l’uniformisation, Ann. Fac. Sci. Univ. Toulouse (3) 17 (1926), 1–22.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Bonk and J. Heinonen, Quasiregular mappings and cohomology, Acta Math. 186 (2001), 219–238.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    É. Borel, Sur les zéros des fonctions entières, Acta Math. 20 (1897), 357–396.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    F. Brüggemann, Proof of a conjecture of Frank and Langley concerning zeros of meromorphic functions and linear differential polynomials, Analysis 12 (1992), 5–30.MATHMathSciNetGoogle Scholar
  23. 23.
    F. Bureau, Sur quelques propriétés des fonctions uniformes au voisinage d’un point singulier essentiel isolé, C. R. Acad. Sci. Paris 192 (1931), 1350–1352.Google Scholar
  24. 24.
    F. Bureau, Mémoire sur les fonctions uniformes à point singulier essentiel isolé, Mém. Soc. Roy. Sci. Liége (3) 17 no. 3 (1932), 1–52.Google Scholar
  25. 25.
    F. Bureau, Analytic Functions and their Derivatives, Mém. Cl. Sci., Coll. Octavo (3) 7, Acad. Roy. Belgique, Brussels, 1997.Google Scholar
  26. 26.
    C. Carathéodory, Sur quelques généralisations du théorème de M. Picard, C. R. Acad. Sci. Paris 141 (1905), 1213–1215.Google Scholar
  27. 27.
    H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. École Norm. Sup. 45 (1928), 255–346.MATHMathSciNetGoogle Scholar
  28. 28.
    H. Cartan and J. Ferrand, The case of André Bloch, Math. Intelligencer 10 (1988), 23–26.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Chang and M. Fang, Normal families and fixed points, J. Anal. Math. 95 (2005), 389–395.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    H. Chen and M. Fang, On the value distribution of fnf′, Sci. China, Ser. A 38 (1995), 789–798.MATHMathSciNetGoogle Scholar
  31. 31.
    H.-H. Chen and Y.-X. Gu, Improvement of Marty’s criterion and its application, Sci. China, Ser. A 36 (1993), 674–681.MATHMathSciNetGoogle Scholar
  32. 32.
    Z.H. Chen, Normality of families of meromorphic functions with multiple valued derivatives (in Chinese), Acta Math. Sinica 30 (1987), 97–105.MATHMathSciNetGoogle Scholar
  33. 33.
    C.-T. Chuang, Sur les fonctions holomorphes dans le cercle unité, Bull. Soc. Math. France 68 (1940), 11–41.MathSciNetGoogle Scholar
  34. 34.
    C.-T. Chuang, Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.MATHCrossRefGoogle Scholar
  35. 35.
    E. F. Clifford, Two new criteria for normal families, Comput. Methods Funct. Theory 5 (2005), 65–76.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37 (1962), 17–27.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1965/66), 117–148.CrossRefMathSciNetGoogle Scholar
  39. 39.
    D. Drasin, Normal families and the Nevanlinna theory, Acta Math. 122 (1969), 231–263.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    A. Eremenko, A counterexample to Cartan’s conjecture on holomorphic curves omitting hyperplanes, Proc. Amer. Math. Soc. 124 (1996), 3097–3100.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    A. Eremenko, Holomorphic curves omitting five planes in projective space, Amer. J. Math. 118 (1996), 1141–1151.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    A. Eremenko, Bloch radius, normal families and quasiregular mappings, Proc. Amer. Math. Soc. 128 (2000), 557–560.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    M. Essén and S. Wu, Fix-points and a normal family of analytic functions, Complex Variables Theory Appl. 37 (1998), 171–178.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    M. Essén and S. Wu, Repulsive fixpoints of analytic functions with applications to complex dynamics, J. London Math. Soc. (2) 62 (2000), 139–148.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    P. Fatou, Sur l’itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337–360.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    L. Fejér, Über die Wurzel vom kleinsten absoluten Betrag einer algebraischen Gleichung, Math. Ann. 65 (1908), 413–423.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    G. Frank, Eine Vermutung von Hayman uber Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), 29–36.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986), 407–428.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    G. Frank and W. Schwick,Meromorphe Funktionen, die mit einer Ableitung drei Werte teilen, Results Math. 22 (1992), 679–684.MATHMathSciNetGoogle Scholar
  50. 50.
    G. Frank and W. Schwick, A counterexample to the generalized Bloch principle, New Zealand J. Math. 23 (1994), 121–123.MATHMathSciNetGoogle Scholar
  51. 51.
    M. Fang and L. Zalcman, A note on normality and shared values, J. Aust. Math. Soc. 76 (2004), 141–150.MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    J. Grahl, Some applications of Cartan’s theorem to normality and semiduality of gap power series, J. Anal. Math. 82 (2000), 207–220.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    J. Grahl, A short proof of Miranda’s theorem and some extensions using Zalcman’s lemma, J. Anal. 11 (2003), 105–113.MATHMathSciNetGoogle Scholar
  54. 54.
    Y. X. Gu, A criterion for normality of families of meromorphic functions (in Chinese), Sci. Sinica Special Issue 1 on Math. (1979), 267–274.Google Scholar
  55. 55.
    W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. (2) 70 (1959), 9–42.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  57. 57.
    W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967.MATHGoogle Scholar
  58. 58.
    W. K. Hayman, Value distribution and A.P. gaps, J. London Math. Soc. (2) 28 (1983), 327–338.MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel, Boston, Stuttgart, 1985.MATHGoogle Scholar
  60. 60.
    M. Kisaka, On some exceptional rational maps, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 35–38.MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    J. K. Langley, Proof of a conjecture of Hayman concerning f and f″, J. London Math. Soc. (2) 48 (1993), 500–514.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    J. K. Langley, On second order linear differential polynomials, Result. Math. 26 (1994), 51–82.MATHMathSciNetGoogle Scholar
  63. 63.
    O. Lehto, Distribution of values and singularities of analytic functions, Ann. Acad. Sci. Fenn., Ser. A. 249/3 (1957).Google Scholar
  64. 64.
    O. Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv. 33 (1959), 196–205.MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    O. Lehto and K. I. Virtanen, On the behavior of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn., Ser. A. 240 (1957).Google Scholar
  66. 66.
    O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, Berlin, Heidelberg, New York, 1973.MATHCrossRefGoogle Scholar
  67. 67.
    A. J. Lohwater and C. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn., Ser. A 550 (1973).Google Scholar
  68. 68.
    J. Milnor, Dynamics in One Complex Variable, Vieweg, Braunschweig, Wiesbaden, 1999.MATHGoogle Scholar
  69. 69.
    D. Minda, A heuristic principle for a nonessential isolated singularity, Proc. Amer. Math. Soc. 93 (1985), 443–447.MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    R. Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc. 84 (1982), 35–43.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    C. Miranda, Sur une nouveau critère de normalité pour les familles de fonctions holomorphes, Bull. Soc. Math. France 63 (1935), 185–196.MathSciNetGoogle Scholar
  72. 72.
    P. Montel, Sur les suites infinies des fonctions, Ann. École Norm. Sup. 24 (1907), 233–334.MATHMathSciNetGoogle Scholar
  73. 73.
    P. Montel, Leçons sur les familles normales des fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.Google Scholar
  74. 74.
    E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), 239–259.MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), 195–206.MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    T. Murai, Gap series, in: Y. Komatu, K. Niino and C.-C. Yang (eds.), Analytic Functions of one Complex Variable, Pitman Res. Notes. Math. Ser. 212, John Wiley, New York, 1989, 149–177.Google Scholar
  77. 77.
    Z. Nehari, A generalization of Schwarz’ lemma, Duke Math. J. 14 (1947), 1035–1049.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367–391.MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929.MATHGoogle Scholar
  80. 80.
    R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin, Göttingen, Heidelberg, 1953.MATHCrossRefGoogle Scholar
  81. 81.
    S. Nevo and X. Pang, Quasinormality of order 1 for families of meromorphic functions, Kodai Math. J. 27 (2004), 152–163.MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    S. Nevo, X. Pang and L. Zalcman, Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros, Electron. Res. Announc. Amer. Math. Soc., to appear.Google Scholar
  83. 83.
    X. Pang, Bloch’s principle and normal criterion, Sci. China, Ser. A 32 (1989), 782–791.MATHMathSciNetGoogle Scholar
  84. 84.
    X. Pang,, On normal criterion of meromorphic functions, Sci. China, Ser. A 33 (1990), 521–527.MATHMathSciNetGoogle Scholar
  85. 85.
    X. Pang, Shared values and normal families, Analysis 22 (2002), 175–182.MATHGoogle Scholar
  86. 86.
    X. Pang, S. Nevo and L. Zalcman, Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana 21 (2005), 249–262.MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    X. Pang and L. Zalcman, On theorems of Hayman and Clunie, New Zealand J. Math. 28 no.1 (1999), 71–75.MATHMathSciNetGoogle Scholar
  88. 88.
    X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325–331.MATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    X. Pang and L. Zalcman, Normality and shared values, Ark. Mat. 38 (2000), 171–182.MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzereihen, Math. Z. 29 (1929), 549–640; Collected Papers, Vol. 1: Singularities of analytic functions, MIT Press, Cambridge, London, 1974, 363–454.MATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Ch. Pommerenke, Normal functions, in: Proceedings of the NRL conference on classical function theory, U. S. Government Printing Office, Washington, D. C., 1970, 77–93.Google Scholar
  92. 92.
    S. Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100–117.MATHCrossRefMathSciNetGoogle Scholar
  93. 93.
    S. Rickman, Quasiregular Mappings, Springer, Berlin, 1993.MATHCrossRefGoogle Scholar
  94. 94.
    A. Robinson, Metamathematical problems, J. Symbolic Logic 38 (1973), 500–516.MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    R. M. Robinson, A generalization of Picard’s and related theorems, Duke Math. J. 5 (1939), 118–132.CrossRefMathSciNetGoogle Scholar
  96. 96.
    P. C. Rosenbloom, L’itération des fonctions entières, C. R. Acad. Sci. Paris 227 (1948), 382–383.MATHMathSciNetGoogle Scholar
  97. 97.
    L. A. Rubel, Four counterexamples to Bloch’s principle, Proc. Amer. Math. Soc. 98 (1986), 257–260.MATHMathSciNetGoogle Scholar
  98. 98.
    S. Ruscheweyh and L. Salinas, On some cases of Bloch’s principle, Sci. Ser. A 1 (1988), 97–100.MATHMathSciNetGoogle Scholar
  99. 99.
    S. Ruscheweyh and K.-J. Wirths, Normal families of gap power series, Results Math. 10 (1986), 147–151.MATHMathSciNetGoogle Scholar
  100. 100.
    W. Saxer, Über die Ausnahmewerte sukzessiver Derivierten, Math. Z. 17 (1923), 206–227.MATHCrossRefMathSciNetGoogle Scholar
  101. 101.
    W. Saxer, Sur les valeurs exceptionelles des dériveées successives des fonctions méromorphes, C. R. Acad. Sci. Paris 182 (1926), 831–833.MATHGoogle Scholar
  102. 102.
    J. L. Schiff, Normal Families, Springer, New York, Berlin, Heidelberg, 1993.MATHCrossRefGoogle Scholar
  103. 103.
    W. Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. 52 (1989), 241–289.MATHCrossRefMathSciNetGoogle Scholar
  104. 104.
    W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50–54.MATHCrossRefMathSciNetGoogle Scholar
  105. 105.
    H. Siebert, Fixpunkte und normale Familien quasiregulärer Abbildungen, Dissertation, University of Kiel, 2004;
  106. 106.
    H. Siebert, Fixed points and normal families of quasiregular mappings, J. Analyse Math., to appear.Google Scholar
  107. 107.
    N. Steinmetz, On the zeros of \((f {(p)}+a_{p-1}f {p-1}+\dots+a_0 f)f\), Analysis 7 (1987), 375–389.MATHMathSciNetGoogle Scholar
  108. 108.
    N. Steinmetz, Rational Iteration, Walter de Gruyter, Berlin, 1993.MATHCrossRefGoogle Scholar
  109. 109.
    E. Ullrich, Über die Ableitung einer meromorphen Funktion, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. (1929), 592–608.Google Scholar
  110. 110.
    G. Valiron, Lectures on the General Theory of Integral Functions, Édouard Privat, Toulouse, 1923; Reprint: Chelsea, New York, 1949.Google Scholar
  111. 111.
    G. Valiron, Sur les théorèmes des MM. Bloch, Landau, Montel et Schottky, C. R. Acad. Sci. Paris 183 (1926), 728–730.MATHGoogle Scholar
  112. 112.
    G. Valiron, Familles normales et quasi-normales de fonctions méromorphes, Mémorial des Sciences Math. 38, Gauthier-Villars, Paris, 1929.Google Scholar
  113. 113.
    G. Valiron, Sur les valeurs exceptionelles des fonctions méromorphes et de leurs dérivées, Hermann & Cie, Paris, 1937.Google Scholar
  114. 114.
    G. Valiron, Des théorèmes de Bloch aux théories d’Ahlfors, Bull. Sci. Math. 73 (1949), 152–162.MATHMathSciNetGoogle Scholar
  115. 115.
    S. G. Wang and S. J. Wu, Fixpoints of meromorphic functions and quasinormal families (in Chinese), Acta. Math. Sinica 45 (2002), 545–550.MATHGoogle Scholar
  116. 116.
    Y. Wang and M. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica New Ser. 14 (1998), 17–26.MATHCrossRefMathSciNetGoogle Scholar
  117. 117.
    G. Xue and X. Pang, A criterion for normality of a family of meromorphic functions (in Chinese), J. East China Norm. Univ., Nat. Sci. Ed. 2 (1988), 15–22.MathSciNetGoogle Scholar
  118. 118.
    L. Yang, Some recent results and problems in the theory of value-distribution, in: W. Stoll (ed.), Proceedings of the Symposium on Value Distribution Theory in Several Complex Variables, Univ. of Notre Dame Press, Notre Dame Math. Lect. 12 (1992), 157–171.Google Scholar
  119. 119.
    L. Yang and K.-H. Chang, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples. I. Un nouveau critére et quelques applications, Sci. Sinica 14 (1965), 1258–1271.MATHMathSciNetGoogle Scholar
  120. 120.
    L. Yang and K.-H. Chang, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples. II. Généralisations, Sci. Sinica 15 (1966), 433–453.MATHMathSciNetGoogle Scholar
  121. 121.
    L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813–817.MATHCrossRefMathSciNetGoogle Scholar
  122. 122.
    L. Zalcman, On some questions of Hayman, unpublished manuscript, 5 pages, 1994.Google Scholar
  123. 123.
    L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N. S.) 35 (1998), 215–230.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Heldermann  Verlag 2006

Authors and Affiliations

  1. 1.Mathematisches SeminarChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations