PharmacoEconomics Spanish Research Articles

, Volume 6, Issue 4, pp 146–158 | Cite as

Revisión de análisis económicos sobre tecnologías emergentes en oncología

  • Luís Quecedo Gutiérrez
  • Juan Llano del Señarís
  • María Luz Amador
Artículo de Investigación Original

Resumen

Introducción: Se realiza una revisión sistemática de estudios de evaluación económica sobre la aplicación de la genómica y proteómica en el área oncológica. El objetivo es evaluar tecnologías diagnósticas o terapéuticas emergentes cuyo ratio coste-efectividad permita que sean socialmente aplicables en los diferentes sistemas de salud.

Métodos: Se analizan los estudios relevantes disponibles de los últimos 10 años en las bases de datos Medline, Embase, Cancerlit y Cochrane Library.

Resultados: Se analizaron 14 estudios: 5 sobre cáncer de mama, 8 en neoplasias colorrectales y 1 en neoplasia urológica. De los estudios analizados, 4 fueron estudios de coste-utilidad, 9 fueron de coste-efectividad y 1 fue de minimización de costes.

Discusión: En el contexto del consejo genético del cáncer de mama, el análisis de la secuencia genética del BRCA 1 y 2 obtiene un ratio coste-efectividad favorable. En el cribaje de pacientes con sobreexpresión de la proteína HER-2, la utilización del HercepTest con confirmación mediante FISH ha demostrado mejor ratio coste-efectividad que la utilización aislada de FISH. Los test basados en microarray-test, Oncotype Dx y MammaPrint muestran un gran potencial como herramientas para el análisis del riesgo de recurrencia y perfiles de expresión génica. En el cáncer hereditario colorrectal, la identificación del APC, MSI, y genes MLH1 y MSH2 mediante test específicos mejora la supervivencia y los resultados obtenidos mediante el consejo genéticos de los familiares. En cáncer prostático, los test de ploidía de ADN son relativamente baratos y obtienen resultados de AVAC elevados.

Conclusión: Existe en la actualidad un incremento significativo de estudios de análisis económicos relacionados con aplicaciones en el área de la genómica. Estos estudios constituyen una importante aportación para el trabajo de los gestores y personal sanitario a la hora de decidir la pertinente incorporación de las contribuciones de la genómica en el área de la oncología.

Palabras clave

cribaje genético farmacogenómica análisis de costes oncología cáncer 

Abstract

Introduction: This is a systematic review of economic studies assessing the use of genomics and proteomics in oncology. The goal is to evaluate emerging diagnostic and therapeutic technologies with a cost-effectiveness ratio that makes them socially acceptable in different health care systems.

Methods: Relevant studies from the past 10 years available at databases like Medline, Embase, Cancerlit, and The Cochrane Library are analyzed.

Results: Fourteen studies were analyzed; 5 focusing on breast cancer, 8 on colorectal neoplasms, and 1 on urologic neoplasms. Four of the studies analyzed were on cost-utility ratios, 9 on cost-effectiveness, and 1 on cost minimization.

Discussion: In the context of genetic breast cancer testing, the assessment of BRCA1 and BRCA2 gene sequence showed a favorable cost-effectiveness ratio. In the screening of patients with HER-2 overexpression, the use of FISHconfirmed HercepTest has shown a much better cost-effectiveness ratio than the use of FISH alone. Microarray, Oncotype Dx, and MammaPrint tests showed great potential for assessing the risk of recurrence and gene expression profiles. In congenital colorectal cancer, identification of APC, MSI, as well as MLH1 and MSH2 gene expression through specific tests helps improve survival as well as the results obtained through genetic testing of relatives. In prostate cancer, DNA Ploidy analyses are relatively inexpensive and render high QALY results.

Conclusion: There has been a significant increase in studies that assess the economic issues related to the application of genomics. These studies represent a great contribution to the work of health care providers and professionals when they have to decide on the pertinent incorporation of the contributions made by genomics to the area of oncology.

Key Words

genetic screening pharmacogenomics cost analysis; oncology cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografía

  1. 1.
    Daniels Mullins C. Overview of cancers economics. AJMC 1999: 5: S371–6.Google Scholar
  2. 2.
    Desai AA, Innocenti F, Ratain MJ. UGT pharmacogenomics: implications for cancer risk and cancer therapeutics. Pharmacogenetics 2003; 13: 517–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton M. Cancer and genomics. Nature 2001; 409: 850–2.PubMedCrossRefGoogle Scholar
  4. 4.
    Golub TR, Slonim DK, Tamayo P et al. Molecular classsification of cancer: class discovery and class prediction by gene expresión monitoring. Science 1999; 286: 531–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Regalado A. Inventing the pharmacogenomics business. Am J Health Syst Pharm 1999; 56: 40–50.PubMedGoogle Scholar
  6. 6.
    Presidís A. The Business of pharmacogenomics. Nat Biotechnol 1998; 16: 209–10.CrossRefGoogle Scholar
  7. 7.
    Rogowski W. Genetic Screening. A systematic review of health economic evidence. 5o World Conference IHEA. Barcelona 2005.Google Scholar
  8. 8.
    Carlson J, Henrikson NB, Veenstra DL y Ramsey SD. Economic Analysis of the human genetics services: a systematic review. 5o World Conference IHEA. Barcelona 2005.Google Scholar
  9. 9.
    Philips K, Van Bebber SL. A Systematic review of cost-effectiveness analysis of pharmacogenomic interventions. Pharmacogenomics 2004;5:1139–49.CrossRefGoogle Scholar
  10. 10.
    Drummond MF, O’Brien BO, Stodardt GL, Torrance GW. Methods for the Economic Evaluation of Health Care Programmes. 2nd Edition. New York: Oxford University Press, 1997.Google Scholar
  11. 11.
    Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. Int J Technol Assess Health Care 2005; 21 (2): 240–5.PubMedGoogle Scholar
  12. 12.
    Olry de Labry Lima A, Sordo del Castillo L, Garcia Mochon L, Epstein D, Bermudez Tamayo C, Villegas Portero R. Evaluacion economica de la prueba genetica de la poliposis adenomatosa familiar. Revista Española de Enfermedades Digestivas 2008; 100 (8): 470–5.Google Scholar
  13. 13.
    Morelle M. Hasle E. Treilleux I. Michot JP. Bachelot T. Penault-Llorca F. Carrere MO. Cost-effectiveness analysis of strategies for HER2 testing of breast cancer patients in France. International Journal of Technology Assessment in Health Care 2006; 22 (3):396–401.Google Scholar
  14. 14.
    Sevilla C. Julian-Reynier C. Eisinger F. Stoppa-Lyonnet D. Bressac-de Paillerets B. Sobol H. Moatti JP. Impact of gene patents on the cost-effective delivery of care: the case of BRCA1 genetic testing. International Journal of Technology Assessment in Health Care 2003;19 (2): 287–300.CrossRefGoogle Scholar
  15. 15.
    Vasen HF. van Ballegooijen M. Buskens E. Kleibeuker JK. Taal BG. Griffioen G. Nagengast FM. Menko FH. Meera Khan P.A cost-effectiveness analysis of colorectal screening of hereditary nonpolyposis colorectal carcinoma gene carriers. Cancer 1998; 82 (9):1632–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Elkin EB, Weinstein MC, Winer EP, Kuntz KM, Schnitt SJ, Weeks JC. HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis. J Clin Oncol 2004; 22(5):854–863.PubMedCrossRefGoogle Scholar
  17. 17.
    Lawrence WF, Peshkin BN, Liang W, Isaacs C, Lerman C, Mandelblatt JS. Cost of genetic counseling and testing for BRCA1 and BRCA2 breast cancer susceptibility mutations. Cancer Epidemiol Biomarkers Prev 2001; 10 (5): 475–81.PubMedGoogle Scholar
  18. 18.
    Balmaña J, Sanz J, Bonfill X, Casado A et al. Genetic counseling program in familial breast cancer: analysis of its efectiveness, cost and cost-effectiveness ratio. Int J Cancer 2004; 112:647–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Oestreicher N, Ramsey SD, Linden HM, McCune JS, van’t Veer LJ, Burke W, Veenstra DL. Gene expression profiling and breast cancer care: what are the potential benefits and policy implications? Genet Med 2005; 7 (6): 380–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hornberger J, Cosler LE, Lyman GH. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 2005; 11(5): 313–24.PubMedGoogle Scholar
  21. 21.
    Cromwell DM, Moore RD, Brensinger JD, Petersen GM, Bass EB, Giardiello FM. Cost analysis of alternative approaches to colorectal screening in familial adenomatous polyposis. Gastroenterology 1998; 114 (5): 893–901.PubMedCrossRefGoogle Scholar
  22. 22.
    Bapat B, Noorani H, Cohen Z, Berk T, Mitri A, Gallie B et al. Cost comparison of predictive genetic testing versus conventional clinical screening for familial adenomatous polyposis. Gut 1999; 44 (5): 698–703.PubMedCrossRefGoogle Scholar
  23. 23.
    hikhaoui Y, Gelinas H, Joseph L, Lance JM. Cost-minimization analysis of genetic testing versus clinical screening of at-risk relatives for familial adenomatous polyposis. Int J Technol Assess Health Care 2002; 18 (1): 67–80.Google Scholar
  24. 24.
    Ramsey SD, Clarke L, Etzioni R, Higashi M, Berry K, Urban N. Cost-effectiveness of microsatellite instability screening as a method for detecting hereditary nonpolyposis colorectal cancer. Ann Intern Med 2001 Oct 16;135(8 Pt 1): 577–88.PubMedGoogle Scholar
  25. 25.
    Eyes CM, Allen BA, Terdiman JP, Wilson LS. Comparison of selection strategies for genetic testing of patients with hereditary nonpolyposis colorectal carcinoma: effectiveness and cost-effectiveness. Cancer 2002; 95(9): 1848–56.CrossRefGoogle Scholar
  26. 26.
    Kievit W, de Bruin JH, Adang EM, Severens JL, Kleibeuker JH, Sijmons RH et al. Cost effectiveness of a new strategy to identify HNPCC patients. Gut 2005; 54(1): 97–102.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown M L, Kessler L G. The use of gene tests to detect hereditary predisposition to cancer: economic considerations. Journal of the National Cancer Institute, 1995; 87(15):1131–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Hagen A, Hessabi HK, Gorenoi V, Schonermark MP. Costeffectiveness evaluation of predictive molecular diagnosis using the example of hereditary nonpolyposis colorectal cancer (HNPCC). Gesundheitswesen 2008; 70: 18–27.PubMedCrossRefGoogle Scholar
  29. 29.
    Calvert NW, Morgan AB, Catto JW, Hamdy FC, Akehurst RL, Mouncey P et al. Effectiveness and cost-effectiveness of prognostic markers in prostate cancer. Br J Cancer 2003; 88(1):31–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Johansson JE, Holmeberg L, Johansen S et al. Fifteen year survival in prostate cancer. A prospective, population based study in Sweden. JAMA 1997; 277: 467–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Chattopadhyay SK, Caplan LS, Blackman D, McKenna MT. Economic Barriers to Preventive Cancer Screenings. Academy for Health Services Research and Health Policy. Meeting. Abstr Acad Health Serv Res Health Policy Meet 2000; 17.Google Scholar
  32. 32.
    Van’t Veer L, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–35.CrossRefGoogle Scholar
  33. 33.
    Piccart-Gebhart M. J., Procter M., Leyland-Jones B., Goldhirsch A et al. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med 2005; 353: 1659–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Joensuu H., Kellokumpu-Lehtinen P.-L., Bono P., et al. Adjuvant Docetaxel or Vinorelbine with or without Trastuzumab for Breast Cancer. N Engl J Med 2006; 354:809–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Lynch H. T., Smyrk T. C. Identifying Hereditary Nonpolyposis Colorectal Cancer. N Engl J Med 1998; 338:1537–1538.PubMedCrossRefGoogle Scholar
  36. 36.
    Hampel H., Frankel W. L., Martin E., et al. Screening for the Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer). N Engl J Med 2005; 352: 1851–60, May 5, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatelliteinstability status as a predictor of benefit from fluorouracilbased adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349: 247–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Veltri RW, Miller MC, Partin AW, Coffey DS, Epstein JI. Ability to predict biochemical progression using Gleason score and a computer-generated quantitative nuclear grade derived from cancer cell nuclei. Urology 1996; 48 (5): 685–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Sacristán JA, Oliva J, Del Llano J, Prieto L, Pinto JL. ¿Qué es una tecnología eficiente en España? Gac Sanit 2002; 16 (4): 334–43.PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2009

Authors and Affiliations

  • Luís Quecedo Gutiérrez
    • 1
  • Juan Llano del Señarís
    • 2
  • María Luz Amador
    • 3
  1. 1.Fundación Gaspar CasalMadridEspaña
  2. 2.Fundación Gaspar CasalMadridEspaña
  3. 3.Roche Farma EspañaEspaña

Personalised recommendations