Isolation and Characterization of Ripening-related Expansin cDNA from Tomato

  • K. N. Anjanasree
  • K. C. BansalEmail author


Among different ripening-related genes, expansins are unique due to their non-enzymatic nature and their ability to stimulate cell wall disassembly by reversible disruption of hydrogen bonds at cellulose-hemicellulose interface. In the present study, LeExp1 cDNA from an Indian tomato cv Pusa Sheetal has been cloned and sequenced. The LeExp1 gene expression was analyzed in vegetative tissues, flowers and fruit tissues at different stages of ripening. The gene was found to express only in fruit tissues from breaker stage onwards. The transcript level progressively increased beyond the breaker stage and achieved a maximum level at the pink and red ripe stages of fruit development. The nucleotide and predicted amino acid sequences of the LeExp1 cDNA were compared with ripening-related expansins from others species and revealed high degree of conservation.


expansin tomato Lycopersicon esculentum fruit ripening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kramer M, Sanders R, Bolkan H, Waters C, Sheehy RE & Hiatt WR, Postharvest Bioi Technol, 1 (1992) 241.CrossRefGoogle Scholar
  2. 2.
    Langley KR, Martin A, Stenning R, Murray AJ, Hobson GE, Schuch WW & Bird CR, J Sci Food Agric, 66 (1994) 547.CrossRefGoogle Scholar
  3. 3.
    Tieman DM, Harriman RW, Rammohan G & Handa AK, Plant Cell, 4 (1992) 667.PubMedGoogle Scholar
  4. 4.
    Thakur BR, Singh RK & Handa AK, J Agric Food Chern, 44 (1996) 628.CrossRefGoogle Scholar
  5. 5.
    Mc Queen-Mason SJ, Durachko DM & Cosgrove DJ, Plant Cell, 4 (1992) 1425.Google Scholar
  6. 6.
    Cosgrove DJ, Nature, 407 (2000) 321.PubMedCrossRefGoogle Scholar
  7. 7.
    Rose JKC, Lee HH & Bennett AB, Proc Natl Acad Sci, USA, 94 (1997) 5955.PubMedCrossRefGoogle Scholar
  8. 8.
    Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB & Dunsmuir P, Plant Cell, 11 (1999) 2203.PubMedGoogle Scholar
  9. 9.
    Rose JKC, Cosgrove DJ, Albershem P, Darvill AG & Bennett AB, Plant Physiol, 123 (2000) 1583.PubMedCrossRefGoogle Scholar
  10. 10.
    Dellapenna D, Alexander DC & Bennett AB, Proct Natl Acad Sci, USA, 83 (1986) 6420.CrossRefGoogle Scholar
  11. 11.
    Chengappa S, Guillreoux M, Phillips W & Shields R, Plant Mol Bioi, 40 (1999) 213.CrossRefGoogle Scholar
  12. 12.
    Grierson D & Tucker GA, Planta, 157 (1983) 174.CrossRefGoogle Scholar
  13. 13.
    Brummel DA, Harpster MH & Dunsmuir P, Plant Mol Bioi, 39 (1999) 161.CrossRefGoogle Scholar
  14. 14.
    Shcherban TV, Shi J, Durachko DM, Guiltinan MJ, McQueenMason SJ, Shieh M & Cosgrove DJ, Proc Natl Acad Sci, USA, 92 (1995) 9245.PubMedCrossRefGoogle Scholar
  15. 15.
    Dostal DE, Rothblum KN & Baker KM, Anal Biochem, 223 (1994) 239.PubMedCrossRefGoogle Scholar
  16. 16.
    Shackel KA, Greve C, Labavitch JM & Ahmadi H, Plant Physiol, 97 (1991) 814.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.National Research Centre on Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations