European Archives of Paediatric Dentistry

, Volume 9, Issue 4, pp 172–179 | Cite as

Molar-Incisor-Hypomineralisation: A literature review

  • N. S. WillmottEmail author
  • R. A. E. Bryan
  • M. S. Duggal


Background: Molar-Incisor-Hypomineralisation (MIH) is a qualitative defect of 1–4 first permanent molars with or without the maxillary and mandibular permanent incisors. It seems to have been recognised first in the 1970s and prevalence varies between 2.8% and 25%, dependent upon the study. Methods: The dental literature was searched using a number of key terms entered into MEDLINE, the reference list of each paper as located was examined for further papers that had been missed in the initial search. Results: The review of the literature showed that teeth that are affected indicate a systemic cause at around the time of birth; investigators have put forward a number of possible causes; asthma, pneumonia, upper respiratory tract infections, otitis media, antibiotics, dioxins in mother’s milk, tonsillitis and tonsillectomy and exanthamatous fevers of childhood. However, at the present time the aetiology remains unclear. Treatment of the affected permanent first molars can include restorations using adhesive intra-coronal restorations to extra-coronal restorations (e.g. preformed metal crowns). There is little evidence to support one option over another. In severe cases extraction at the optimum time may be the best option; allowing the permanent second molars to come forwards. There is little improvement in affected anterior teeth with microabrasion and direct or indirect composite resin restorations may be appropriate in some children. Ultrastructural and biochemical make up of MIH affected teeth seem to have been investigated less than other areas. Conclusion: It is important that children with MIH are diagnosed as early as possible and managed appropriately; this will involve multidisciplinary input.

Key words

molar-incisor-hypomineralisation MIH prevalence MIH treatment MIH aetiology MIH ultrastructure and biochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alaluusua S, Lukinmaa P-J, Vartiainen T, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans via mother’s milk may cause developmental defects in the child’s teeth. Environ toxicol pharmacol 1996a; 1: 193–197.PubMedCrossRefGoogle Scholar
  2. Alaluusua S, Lukinmaa P-L, Koskimies M, et al. Developmental dental defects associated with long breastfeeding. Eur J Oral Sci 1996b; 104: 493–497.PubMedCrossRefGoogle Scholar
  3. Alaluusua S, Kukinmaa P-L, Torppa J, Tuomisto J, Vartiainen T. Developing teeth as biomarker of dioxin exposure. Lancet 1999; 353: 206.PubMedCrossRefGoogle Scholar
  4. Anderson P, Elliott J C, Bose U, Jones S J. A comparison of the mineral content of enamel and dentine in human premolars and enamel pearls measured by X-ray microtomography. Arch Oral Biol 1996; 41: 281–290.PubMedCrossRefGoogle Scholar
  5. Al-Dobiyan F I, Shore R C, Duggal M S, Toumba K J. Elemental analyses of enamel of MIH molars compared to normal enamel. European Academy of Paediatric Dentistry Congress Abstract number O29. Eur Arch Paediatr Dent 2006; 7:168.Google Scholar
  6. Angmar B, Carlström D, Glas J-E. Studies on the ultrastructure of dental enamel. J Ultra Res 1963; 8: 12–23.CrossRefGoogle Scholar
  7. Arrow P. Prevalence of developmental enamel defects of the first permanent molars among school children in Western Australia. Aust Dent J 2008; 53: 250–259.PubMedCrossRefGoogle Scholar
  8. Beentjes V E, Weerheijm K L, Groen H J. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur J Paediatr Dent 2002; 3: 9–13.PubMedGoogle Scholar
  9. Beentjes V E V M, Weerheijm K L, Groen HJ. A match-control study into the aetiology of hypomineralised first permanent molars. European Academy of Paediatric Dentistry Congress Abstract number 76. EurJ Paediatr Dent 2000; 1:123.Google Scholar
  10. Calderara P C, Gerthoux P M, Mocarelli P, et al. The prevalence of Molar-Incisor-Hypomineralisation (MIH) in a group of Italian school children. Eur J Paediatr Dent 2005; 2: 79–83.Google Scholar
  11. Cho S-Y, Ki Y, Chu V. Molar-incisor-hypomineralisation in Hong Kong Chinese children. Int J Paediatr Dent 2008; 18: 348–352.PubMedCrossRefGoogle Scholar
  12. Crombie F A, Manton D J, Weerheijm K L, Kilpatrick N M. Molar-Incisor-Hypomineralisation: a survey of members of the Australian and New Zealand Society of Paediatric Dentistry. Aust Dent J 2008; 53:160–166.PubMedCrossRefGoogle Scholar
  13. Dietrich G, Sperling S, Hetzer G. Molar-Incisor-Hypomineralisation in a group of children and adolescents living in Dresden (Germany). Eur J Paediatr Dent 2003; 3: 133–137.Google Scholar
  14. Eanes E D, Meyer J L. The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Int 1977; 23: 259–269.CrossRefGoogle Scholar
  15. Fayle S A. Molar-Incisor-Hypomineralisation: Restorative management. Eur J Paediatr Dent 2003; 4: 121–126.PubMedGoogle Scholar
  16. Fearne J, Anderson P, Davis G R. 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br Dent J 2004; 196: 634–638.PubMedCrossRefGoogle Scholar
  17. Fteita D, Ali A, Alaluusua S. Molar-Incisor hypomineralisation (MIH) in a group of school-aged children in Benghazi, Libya. Eur Arch Paediatr Dent 2006; 7: 92–95.PubMedCrossRefGoogle Scholar
  18. Heijs SCB, Dietz W, Norén J G, Blanksma N G, Jälevik B. Morhology and chemical composition of dentin in permanent first molars with the diagnose MIH. Swed Dent J 2007; 31: 155–164.PubMedGoogle Scholar
  19. Hiller CR, Robinson C, Weatherell J A. Variations in the composition of developing rat incisor enamel. Calcif Tissue Res 1975; 1: 1–12.CrossRefGoogle Scholar
  20. Jälevik B, Klingberg G, Norén J G, Barregård L. Epidemiological study of idiopathic enamel hypomineraliation in permanent first molars. European Academy of Paediatric Dentistry Congress Abstract number 99. Eur J Paediatr Dent 2000; 1:128.Google Scholar
  21. Jälevik B, Norén J G. Enamel hypomineralisation of permanent first molars: a morphological study and survey of possible aetiological factors. Int J Paediatr Dent 2000; 10: 278–289.PubMedCrossRefGoogle Scholar
  22. Jälevik B, Norén J G, Klingberg G, Barregård l. Etiologic factors influencing the prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Eur J Oral Sci 2001; 109: 230–234.PubMedCrossRefGoogle Scholar
  23. Jälevik B, Klingberg G, Barregård L, Norén J G. The prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Acta Odontol Scand 2001a; 59:255–260.PubMedCrossRefGoogle Scholar
  24. Jälevik B, Odelius H, Dietz W, Norén J G. Secondary ion mass spectrometry and x-ray microanalysis of hypomineralised enamel in human permanent first molars. Arch Oral Biol 2001b; 46: 239–247.PubMedCrossRefGoogle Scholar
  25. Jälevik B, Klingberg G. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralisation in their permanent first molars. Int J Paediatr Dent 2002; 12: 24–32.PubMedGoogle Scholar
  26. Jälevik B, Dietz W, Norén J G. Scanning electron micrograph analysis of hypomineralised enamel in permanent first molars. Int J Paediatr Dent 2005; 15:233–240.PubMedCrossRefGoogle Scholar
  27. Jälevik B, Möller M. Evaluation of spontaneous space closure and development of permanent dentition after extraction of hypomineralised permanent first molars. Int J Paediatr Dent 2007; 17: 328–335.PubMedCrossRefGoogle Scholar
  28. Jasulaityte l, Veerkamp J S, Weerheijm K L. Molar-incisor-hypomineralisation: review and prevalence data from a study of primary school children in Kaunas (Lithuania). Eur Arch Paediatr Dent 2007; 8: 87–94.PubMedCrossRefGoogle Scholar
  29. Koch G, Hallonsten A-L, Ludvigsson N, et al. Epidemiologic study of idiopathic enamel hypomineralisation in permanent teeth of Swedish children. Community Dent Oral Epidemiol 1987; 15:279–85.PubMedCrossRefGoogle Scholar
  30. Kosem R, Senk-Erpic A, Kosir N, Kastelec D. Prevalence of enamel defects with emphasis on MIH in Slovenian children and adolescents. European Academy of Paediatric Dentistry Congress Abstract number O64. Eur J Paediatr Dent 2004; 5:18.Google Scholar
  31. Leppäniemi A, Lukinmaa L, Alaluusua S. Nonfluoride hypomineralisation in permanent first molars. European Academy of Paediatric Dentistry Congress Abstract number 100. EurJ Paediatr Dent 2000; 1:128.Google Scholar
  32. Leppäniemi A, Lukinmaa P-L, Alaluusua S. Nonfluoride Hypomineralisation in the permanent first molars and their impact on treatment need. Caries Res 2001; 35:36–40.PubMedCrossRefGoogle Scholar
  33. Lygidakis N A, Chaliasou A, Siounas G. Evaluation of composite restorations in hypomineralised permanent molars: a four-year clinical trial. Eur J Paediatr Dent 2003; 3:143–148.Google Scholar
  34. Lygidakis N, Dimou G, Marinou D, Gouva G. Aetiology of Molar-Incisor Hypomineralisation. A retrospective study. European Academy of Paediatric Dentistry Congress Abstract number O69. EurJ Paediatr Dent 2004; 5:19.Google Scholar
  35. Lygidakis N A, Dimou G, Briseniou E. M olar-incisor hypomineralisation (MIH). Retrospective clinical study in Greek children. I. Prevalence and defect characteristics. Eur Arch Paediatr Dent 2008a;9: 200–206PubMedGoogle Scholar
  36. Lygidakis N A, Dimou G, Marinou D. Molar-incisor hypomineralisation (MIH). Retrospective clinical study in Greek children. II Possible medical aetiological factors. Eur Arch Paediatr Dent 2008b;9: 207–217PubMedGoogle Scholar
  37. Mahoney E K, Rohanizadeh R, Ismail F S M, Kilpatrick N M, Swain M V. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 2004; 25: 5091–5100.PubMedCrossRefGoogle Scholar
  38. Mathu-Muju K, Wright J T. Diagnosis and treatment of Molar-Incisor-Hypomineralisation. Compendium 2006; 27: 604–611.PubMedGoogle Scholar
  39. Mejàre I, Bergman E, Grindefjord M. Hypomineralised molars and incisors of unknown origin: treatment outcome at age 18 years. Int J Paediatr Dent 2005;15:20–28.PubMedCrossRefGoogle Scholar
  40. Muratbegovic A, Markovic N, Selinovic M G. Molar-Incisor-Hypomineralisation in Bosnia and Herzegovina: Prevalence, aetiology and clinical consequences inmedium caries activity population. Eur Arch Paediatr Dent 2007;8: 189–194.PubMedCrossRefGoogle Scholar
  41. Ogden A R, Pinhas R, White W J. Gross enamel hypoplasia in molars from subadults in a 16th–18th century London graveyard. Am J Phy Anthropol 2007; 133: 957–966.CrossRefGoogle Scholar
  42. Preusser S E, Ferring V, Wleklinski C, Wetzel E-E. Prevalence and severity of Molar-Incisor-Hypomineralisation in a region of Germany — A brief communication. J Public Health Dent 2007; 67:148–150.PubMedCrossRefGoogle Scholar
  43. Rodd H D, Boissonade F M, Day P F. Pulpal status of hypomineralised permanent molars. Pediatr Dent 2007; 29: 514–520.PubMedGoogle Scholar
  44. Shen P, Cai F, Nowicki A, Vincent J, Reynolds E C. Remineralisation of enamel subsurface lesions by sugar-free chewing gum containing Casein Phosphopeptide-Amorphous calcium Phosphate. J Dent Res 2001; 80: 2066–2070.PubMedCrossRefGoogle Scholar
  45. Sydney-Zax M, Mayer I, Deutsch D. Carbonate content in human and bovine enamel. J Dent Res 1991; 5: 913–916.Google Scholar
  46. Van Amerongen W E, Kreulen C M. Cheese molars: A pilot study of the etiology of hypocalcifications in first permanent molars. ASDC J Dent Child 1995; 62:266–269.PubMedGoogle Scholar
  47. Wakiaga J, Brunton P, Silikas N, Glenny A M. Direct versus indirect veneers for intrinsic dental stains. Cochrane database of systematic reviews 2004, issue 1.Google Scholar
  48. Weerheijm K L, Groen H J, Beentjes V EV M. Prevalence in 11-year-old Dutch children of cheese molars. European Academy of Paediatric Dentistry Congress Abstract number 101. EurJ Paediatr Dent 2000; 1:129.Google Scholar
  49. Weerheijm K L, Jälevik B, Alaluusua S. Molar-Incisor Hypomineralisation. Caries Res 2001a; 35: 390–391.PubMedCrossRefGoogle Scholar
  50. Weerheijm K L, Groen H J, Beentjes V EV M, Poorterman J HG. Prevalence of cheese molars in eleven-year-old Dutch children. ASDC J Dent Child 2001b; 68:259–262.PubMedGoogle Scholar
  51. Weerheijm K L, Duggal M, Mejàre I, et al. Judgement criteria for Molar-Incisor-Hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003. Eur Arch Paediatr Dent 2003; 3:110–113.Google Scholar
  52. Weerheijm K L. Molar-Incisor-Hypomineralisation (MIH). Eur J Paediatr Dent 2003; 4: 114–120.PubMedGoogle Scholar
  53. Weerheijm K L, Mejàre I. Molar-incisor-hypomineralisation: a questionnaire inventory of its occurrence in member countries of the European Academy of Paediatric Dentistry (EAPD). Int J Paediatr Dent 2003; 13:411–416.PubMedCrossRefGoogle Scholar
  54. Welbury R R. A clinical study of microfilled composite resin for labial veneers. Int J Paediatr Dent 1991; 1:9–15.PubMedCrossRefGoogle Scholar
  55. Whatling R, Fearne J M, Molar-incisor-hypomineralisation: a study of aetiological factors in a group of UK children. Int JPaediatr Dent 2008; 18: 155–162.CrossRefGoogle Scholar
  56. William V, Messer L B, Burrow M F. Molar-Incisor-Hypomineralisation: Review and recommendations for clinical management. Ped Dent 2006; 28: 224–232.Google Scholar
  57. Williams J K, Gowans A J. Hypomineralised first permanent molars and the orthodontist. Eur J Paediatr Dent 2003; 3: 129–132.Google Scholar
  58. Zagdwon A M, Fayle S A, Pollard M A. A prospective clinical trial comparing preformed metal crowns and cast restorations for defective first permanent molars. Eur J Paediatr Dent 2003; 3: 138–142.Google Scholar

Copyright information

© Adis International 2008

Authors and Affiliations

  • N. S. Willmott
    • 1
    Email author
  • R. A. E. Bryan
    • 1
  • M. S. Duggal
    • 1
  1. 1.Department of Paediatric DentistryLeeds Dental InstituteLeedsEngland

Personalised recommendations