Clinical Pharmacokinetics

, Volume 51, Issue 9, pp 553–572 | Cite as

Carnitine and Acylcarnitines

Pharmacokinetic, Pharmacological and Clinical Aspects
Review Article

Abstract

L-Carnitine (levocarnitine) is a naturally occurring compound found in all mammalian species. The most important biological function of L-carnitine is in the transport of fatty acids into the mitochondria for subsequent β-oxidation, a process which results in the esterification of L-carnitine to form acylcarnitine derivatives. As such, the endogenous carnitine pool is comprised of L-carnitine and various short-, medium-and long-chain acylcarnitines.

The physiological importance of L-carnitine and its obligatory role in the mitochondrial metabolism of fatty acids has been clearly established; however, more recently, additional functions of the carnitine system have been described, including the removal of excess acyl groups from the body and the modulation of intracellular coenzyme A (CoA) homeostasis. In light of this, acylcarnitines cannot simply be considered by-products of the enzymatic carnitine transfer system, but provide indirect evidence of altered mitochondrial metabolism. Consequently, examination of the contribution of L-carnitine and acylcarnitines to the en-dogenous carnitine pool (i.e. carnitine pool composition) is critical in order to adequately characterize metabolic status.

The concentrations of L-carnitine and its esters are maintained within relatively narrow limits for normal biological functioning in their pivotal roles in fatty acid oxidation and maintenance of free CoA availability. The homeostasis of carnitine is multifaceted with concentrations achieved and maintained by a combination of oral absorption, de novo biosynthesis, carrier-mediated distribution into tissues and extensive, but saturable, renal tubular reabsorption.

Various disorders of carnitine insufficiency have been described but ultimately all result in impaired entry of fatty acids into the mitochondria and consequently disturbed lipid oxidation. Given the sensitivity of acylcarnitine concentrations and the relative carnitine pool composition in reflecting the intramitochondrial acyl-CoA to free CoA ratio (and, hence, any disturbances in mitochondrial metabolism), the relative contribution of L-carnitine and acylcarnitines within the total carnitine pool is therefore considered critical in the identification of mitochondria dysfunction. Although there is considerable research in the literature focused on disorders of carnitine insufficiency, relatively few have examined relative carnitine pool composition in these conditions; consequently, the complexity of these disorders may not be fully understood. Similarly, although important studies have been conducted establishing the pharmacokinetics of exogenous carnitine and short-chain carnitine esters in healthy volunteers, few studies have examined carnitine pharmacokinetics in patient groups. Furthermore, the impact of L-carnitine administration on the kinetics of acylcarnitines has not been established.

Given the importance of L-carnitine as well as acylcarnitines in maintaining normal mitochondrial function, this review seeks to examine previous research associated with the homeostasis and pharmaco-kinetics of L-carnitine and its esters, and highlight potential areas of future research.

References

  1. 1.
    Gulewitsch W, Krimberg R. Zur kenntnis der extraktivstoffe der muskeln. II. Mitteilung. Über das carnitin. Hoppe-Seyler’s Z Physiol Chem 1905; 45(3–4): 326–30CrossRefGoogle Scholar
  2. 2.
    Tomita M, Sendju Y. Über die oxyaminoverbindungen, welche die biuretreaktion zeigen. III. Spaltung der γ-amino-β-oxy-buttersäure in die optischaktiven komponenten. Hoppe-Seyler’s Z Physiol Chem 1927; 169(4–6): 263–77CrossRefGoogle Scholar
  3. 3.
    Fritz I. The effect of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates. Acta Physiol Scand 1955; 34(4): 367–85PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman S, Fraenkel G. Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys 1955; 59(2): 491–501PubMedCrossRefGoogle Scholar
  5. 5.
    Carter HE, Bhattacharyya PK, Weidman KR, et al. Chemical studies on vitamin BT isolation and characterization as carnitine. Arch Biochem Biophys 1952; 38: 405–16PubMedCrossRefGoogle Scholar
  6. 6.
    Bremer J. Carnitine: metabolism and functions. Physiol Rev 1983; 63(4): 1420–80PubMedGoogle Scholar
  7. 7.
    Bahl JJ, Bressler R. The pharmacology of carnitine. Annu Rev Pharmacol Toxicol 1987; 27: 257–77PubMedCrossRefGoogle Scholar
  8. 8.
    Choi YR, Fogle PJ, Clarke PR, et al. Quantitation of water-soluble acylcarnitines and carnitine acyltransferases in rat tissues. J Biol Chem 1977; 252(22): 7930–1PubMedGoogle Scholar
  9. 9.
    Pons R, de Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol 1995; 10 Suppl. 2: S8–24PubMedGoogle Scholar
  10. 10.
    Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 2003; 41 (4 Suppl. 4): S4–12PubMedCrossRefGoogle Scholar
  11. 11.
    Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Annu Rev Nutr 1986; 6: 41–66PubMedCrossRefGoogle Scholar
  12. 12.
    McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur JBiochem 1997; 244(1): 1–14CrossRefGoogle Scholar
  13. 13.
    Pande SV, Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating unidirectional transport as well. J Biol Chem 1980; 255(7): 2994–3001PubMedGoogle Scholar
  14. 14.
    Pande SV. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A 1975; 72(3): 883–7PubMedCrossRefGoogle Scholar
  15. 15.
    Miyazawa S, Ozasa H, Osumi T, et al. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem 1983; 94(2): 529–42PubMedGoogle Scholar
  16. 16.
    Bieber LL. Carnitine. Annu Rev Biochem 1988; 57: 261–83PubMedCrossRefGoogle Scholar
  17. 17.
    Ramsay RR, Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys 1993; 302(2): 307–14PubMedCrossRefGoogle Scholar
  18. 18.
    Brass EP, Hoppel CL. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J 1980; 190(3): 495–504PubMedGoogle Scholar
  19. 19.
    Osmundsen H, Bremer J, Pedersen JI. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta 1991; 1085(2): 141–58PubMedCrossRefGoogle Scholar
  20. 20.
    Ramsay RR. The role of the carnitine system in peroxisomal fatty acid oxidation. Am J Med Sci 1999; 318(1): 28–35PubMedCrossRefGoogle Scholar
  21. 21.
    Steiber A, Kerner J, Hoppel CL. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol Aspects Med 2004; 25(5–6): 455–73PubMedCrossRefGoogle Scholar
  22. 22.
    Rebouche CJ. Metabolic fate of dietary carnitine in humans. In: Carter AL, editor. Current concepts in carnitine research. Boca Raton (FL): CRC Press, 1992: 37–48Google Scholar
  23. 23.
    Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 2004; 1033: 30–41PubMedCrossRefGoogle Scholar
  24. 24.
    Lombard KA, Olson AL, Nelson SE, et al. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 1989; 50(2): 301–6PubMedGoogle Scholar
  25. 25.
    Li B, Lloyd ML, Gudjonsson H, et al. The effect of enteral carnitine administration in humans. Am J Clin Nutr 1992; 55(4): 838–45PubMedGoogle Scholar
  26. 26.
    Kato Y, Sugiura M, Sugiura T, et al. Organic cation/carnitine transporter OCTN2 (Slc22a5) is responsible for carnitine transport across apical mem-branes of small intestinal epithelial cells in mouse. Mol Pharmacol 2006; 70(3): 829–37PubMedCrossRefGoogle Scholar
  27. 27.
    Gross CJ, Henderson LM. Absorption of D- and L-carnitine by the intestine and kidney tubule in the rat. Biochim Biophys Acta 1984; 772(2): 209–19PubMedCrossRefGoogle Scholar
  28. 28.
    Shaw RD, Li BUK, Hamilton JW, et al. Carnitine transport in rat small intestine. Am J Physiol 1983; 245(3): G376–81PubMedGoogle Scholar
  29. 29.
    McCloud E, Ma TY, Grant KE, et al. Uptake of L-carnitine by a human intestinal epithelial cell line, Caco-2. Gastroenterology 1996; 111(6): 1534–40PubMedCrossRefGoogle Scholar
  30. 30.
    Hamilton JW, Li BUK, Shug AL, et al. Carnitine transport in human intestinal biopsy specimens: demonstration of an active transport system. Gastroenterology 1986; 91(1): 10–6PubMedGoogle Scholar
  31. 31.
    Gudjonsson H, Li BU, Shug AL, et al. In vivo studies of intestinal carnitine absorption in rats. Gastroenterology 1985; 88(6): 1880–7PubMedGoogle Scholar
  32. 32.
    Gudjonsson H, Li BUK, Shug AL, et al. Studies of carnitine metabolism in relation to intestinal absorption. Am J Physiol 1985; 248(3): G313–9PubMedGoogle Scholar
  33. 33.
    Gross CJ, Savaiano DA. Effect of development and nutritional state on the uptake, metabolism and release of free and acetyl-L-carnitine by the rodent small intestine. Biochim Biophys Acta 1993; 1170(3): 265–74PubMedCrossRefGoogle Scholar
  34. 34.
    Rebouche CJ, Mack DL, Edmonson PF. L-Carnitine dissimilation in the gastrointestinal tract of the rat. Biochemistry 1984; 23(26): 6422–6PubMedCrossRefGoogle Scholar
  35. 35.
    Bain MA, Faull R, Milne RW, et al. Oral L-carnitine: metabolite formation and hemodialysis. Curr Drug Metab 2006; 7(7): 811–6PubMedCrossRefGoogle Scholar
  36. 36.
    Bain MA, Fornasini G, Evans AM. Trimethylamine: metabolic, pharmacokinetic and safety aspects. Curr Drug Metab 2005; 6(3): 227–40PubMedCrossRefGoogle Scholar
  37. 37.
    Rebouche CJ, Chenard CA. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr 1991; 121(4): 539–46PubMedGoogle Scholar
  38. 38.
    Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J 2002; 361 (Part 3): 417–29PubMedCrossRefGoogle Scholar
  39. 39.
    Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J 1992; 6(15): 3379–86PubMedGoogle Scholar
  40. 40.
    Tanphaichitr V, Broquist HP. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. II: studies in the rat. J Biol Chem 1973; 248(6): 2176–81PubMedGoogle Scholar
  41. 41.
    Horne DW, Broquist HP. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. I: studies in Neurospora crassa. J Biol Chem 1973; 248(6): 2170–5PubMedGoogle Scholar
  42. 42.
    Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis: beta-hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem 1978; 253(5): 1654–9PubMedGoogle Scholar
  43. 43.
    Sachan DS, Hoppel CL. Carnitine biosynthesis. Hydroxylation of N-6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine. Biochem J 1980; 188(2): 529–34PubMedGoogle Scholar
  44. 44.
    Sachan DS, Broquist HP. Synthesis of carnitine from epsilon-N-trimethyllysine in post mitochondrial fractions of Neurospora crassa. Biochem Biophys Res Commun 1980; 96(2): 870–5PubMedCrossRefGoogle Scholar
  45. 45.
    Rebouche CJ, Bosch EP, Chenard CA, et al. Utilization of dietary precursors for carnitine synthesis in human adults. J Nutr 1989; 119(12): 1907–13PubMedGoogle Scholar
  46. 46.
    Rebouche CJ, Lehman LJ, Olson L. Epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat. J Nutr 1986; 116(5): 751–9PubMedGoogle Scholar
  47. 47.
    Rebouche CJ, Engel AG. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta 1980; 630(1): 22–9PubMedCrossRefGoogle Scholar
  48. 48.
    Hulse JD, Henderson LM. Carnitine biosynthesis: purification of 4-N′-tri-methylaminobutyraldehyde dehydrogenase from beef liver. J Biol Chem 1980; 255(3): 1146–51PubMedGoogle Scholar
  49. 49.
    Englard S, Blanchard JS, Midelfort CF. Gamma-butyrobetaine hydroxylase: stereochemical course of the hydroxylation reaction. Biochemistry 1985; 24(5): 1110–6PubMedCrossRefGoogle Scholar
  50. 50.
    Lindstedt G, Lindstedt S. Cofactor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem 1970; 245(16): 4178–86PubMedGoogle Scholar
  51. 51.
    Brass EP. Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clin Ther 1995; 17(2): 176–85PubMedCrossRefGoogle Scholar
  52. 52.
    Reuter SE, Evans AM, Chace DH, et al. Determination of the reference range of endogenous plasma carnitines in healthy adults. Ann Clin Biochem 2008; 45(6): 585–92PubMedCrossRefGoogle Scholar
  53. 53.
    Niu YJ, Jiang ZM, Shu H, et al. Assay of carnitine in plasma and urine of healthy adults [in Chinese; abstract]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002; 24(2): 185–7PubMedGoogle Scholar
  54. 54.
    Vinci E, Rampello E, Zanoli L, et al. Serum carnitine levels in patients with tumoral cachexia. Eur J Intern Med 2005; 16(6): 419–23PubMedCrossRefGoogle Scholar
  55. 55.
    Lohninger A, Sendic A, Staniek H, et al. Endurance exercise training and L-carnitine supplementation stimulates gene expression in the blood and muscle cells in young athletes and middle aged subjects. Monatsh Chem 2005; 136(8): 1425–42CrossRefGoogle Scholar
  56. 56.
    Bene J, Komlosi K, Gasztonyi B, et al. Plasma carnitine ester profile in adult celiac disease patients maintained on long-term gluten free diet. World J Gastroenterol 2005; 11(42): 6671–5PubMedGoogle Scholar
  57. 57.
    Jones MG, Goodwin CS, Amjad S, et al. Plasma and urinary carnitine and acylcarnitines in chronic fatigue syndrome. Clin Chim Acta 2005; 360(1–2): 173–7PubMedCrossRefGoogle Scholar
  58. 58.
    Wanner C, Wäckerle B, Boeckle H, et al. Plasma and red blood cell carnitine and carnitine esters during L-carnitine therapy in hemodialysis patients. Am J Clin Nutr 1990; 51(3): 407–10PubMedGoogle Scholar
  59. 59.
    Borum PR. Plasma carnitine compartment and red blood cell carnitine compartment of healthy adults. Am J Clin Nutr 1987; 46(3): 437–41PubMedGoogle Scholar
  60. 60.
    Furst P, Gloggler A. Reappraisal of carnitine concentrations in blood. Clin Chem 1987; 33(10): 1956–7PubMedGoogle Scholar
  61. 61.
    Mayer G, Graf H, Legenstein E, et al. L-Carnitine substitution in patients on chronic hemodialysis. Nephron 1989; 52(4): 295–9PubMedCrossRefGoogle Scholar
  62. 62.
    Maccari F, Hülsmann WC. (Acyl)carnitine distribution between plasma, erythrocytes, and leukocytes in human blood [letter]. Clin Chem 1989; 35(4): 711PubMedGoogle Scholar
  63. 63.
    Savica V, Bellinghieri G, di Stefano C, et al. Plasma and muscle carnitine levels in haemodialysis patients with morphological-ultrastructural examination of muscle samples. Nephron 1983; 35(4): 232–6PubMedCrossRefGoogle Scholar
  64. 64.
    Leschke M, Rumpf KW, Eisenhauer T, et al. Quantitative assessment of carnitine loss during hemodialysis and hemofiltration. Kidney Int 1983; 24 Suppl. 16: S143–6Google Scholar
  65. 65.
    Debska-Slizien A, Kawecka A, Wojnarowski K, et al. Correlation between plasma carnitine, muscle carnitine and glycogen levels in maintenance he-modialysis patients. Int J Artif Organs 2000; 23(2): 90–6PubMedGoogle Scholar
  66. 66.
    Bellinghieri G, Savica V, Mallamace A, et al. Correlation between increased serum and tissue L-carnitine levels and improved muscle symptoms in hemodialyzed patients. Am J Clin Nutr 1983; 38(4): 523–31PubMedGoogle Scholar
  67. 67.
    Penn D, Schmidt-Sommerfeld E. Carnitine and carnitine esters in plasma and adipose tissue of chronic uremic patients undergoing hemodialysis. Metabolism 1983; 32(8): 806–9PubMedCrossRefGoogle Scholar
  68. 68.
    Rodriguez-Segade S, Alonso de la Pena C, Paz JM, et al. Carnitine deficiency in haemodialysed patients. Clin Chim Acta 1986; 159(3): 249–56PubMedCrossRefGoogle Scholar
  69. 69.
    Rodriguez-Segade S, Alonso de la Pena C, Paz M, et al. Carnitine concentrations in dialysed and undialysed patients with chronic renal insufficiency. Ann Clin Biochem 1986; 23(6): 671–5PubMedGoogle Scholar
  70. 70.
    Wanner C, Förstner-Wanner S, Schaeffer G, et al. Serum free carnitine, carnitine esters and lipids in patients on peritoneal dialysis and hemodialysis. Am J Nephrol 1986; 6(3): 206–11PubMedCrossRefGoogle Scholar
  71. 71.
    Wanner C, Förstner-Wanner S, Rössle C, et al. Carnitine metabolism in patients with chronic renal failure: effect of L-carnitine supplementation. Kidney Int 1987; 32 Suppl. 22: S132–5Google Scholar
  72. 72.
    Segre G, Bianchi E, Corsi M, et al. Plasma and urine pharmacokinetics of free and of short-chain carnitine after administration of carnitine in man. Arzneimittelforschung 1988; 38(12): 1830–4PubMedGoogle Scholar
  73. 73.
    Harper P, Wadström C, Cederblad G. Carnitine measurements in liver, muscle tissue, and blood in normal subjects. Clin Chem 1993; 39(4): 592–9PubMedGoogle Scholar
  74. 74.
    Golper TA, Wolfson M, Ahmad S, et al. Multicenter trial of L-carnitine in maintenance hemodialysis patients. I: carnitine concentrations and lipid effects. Kidney Int 1990; 38(5): 904–11PubMedCrossRefGoogle Scholar
  75. 75.
    van Es A, Henny FC, Kooistra MP, et al. Amelioration of cardiac function by L-carnitine administration in patients on haemodialysis. Contrib Nephrol 1992; 98: 28–35PubMedGoogle Scholar
  76. 76.
    Marzo A, Arrigoni-Martelli E, Mancinelli A, et al. Protein binding of L-carnitine family components. Eur J Drug Metab Pharmacokinet 1991; (Spec. No. 3): 364–8Google Scholar
  77. 77.
    Cooper MB, Forte CA, Jones DA. Carnitine and acetylcarnitine in red blood cells. Biochim Biophys Acta 1988; 959(2): 100–5PubMedCrossRefGoogle Scholar
  78. 78.
    Baker H, Frank O, DeAngelis B, et al. Absorption and excretion of L-carnitine during single or multiple dosings in humans. Int J Vitam Nutr Res 1993; 63(1): 22–6PubMedGoogle Scholar
  79. 79.
    Reuter SE, Faull RJ, Ranieri E, et al. Endogenous plasma carnitine pool composition and response to erythropoietin treatment in chronic haemodialysis patients. Nephrol Dial Transplant 2009; 24(3): 990–6PubMedCrossRefGoogle Scholar
  80. 80.
    Arduini A, Tyurin V, Tyuruna Y, et al. Acyl-trafficking in membrane phospholipid fatty acid turnover: the transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human erythrocytes. Biochem Biophys Res Commun 1992; 187(1): 353–8PubMedCrossRefGoogle Scholar
  81. 81.
    Lentner C, Diem K, Seldrup J. Geigy scientific tables. 8th rev. and enl. ed. Basel: Ciba-Geigy Ltd, 1981Google Scholar
  82. 82.
    Rebouche CJ, Engel AG. Carnitine transport in cultured muscle cells and skin fibroblasts from patients with primary systemic carnitine deficiency. In Vitro 1982; 18(5): 495–500PubMedCrossRefGoogle Scholar
  83. 83.
    Willner JH, Ginsburg S, Dimauro S. Active transport of carnitine into skeletal muscle. Neurology 1978; 28(7): 721–4PubMedCrossRefGoogle Scholar
  84. 84.
    Rebouche CJ. Carnitine movement across muscle cell membranes: studies in isolated rat muscle. Biochim Biophys Acta 1977; 471(1): 145–55PubMedCrossRefGoogle Scholar
  85. 85.
    Martinuzzi A, Vergani L, Rosa M, et al. L-Carnitine uptake in differentiating human cultured muscle. Biochim Biophys Acta 1991; 1095(3): 217–22PubMedCrossRefGoogle Scholar
  86. 86.
    Angelini C, Vergani L, Martinuzzi A. Clinical and biochemical aspects of carnitine deficiency and insufficiency: transport defects and inborn errors of β-oxidation. Crit Rev Clin Lab Sci 1992; 29(3–4): 217–42PubMedCrossRefGoogle Scholar
  87. 87.
    Brooks DE, McIntosh JEA. Turnover of carnitine by rat tissues. Biochem J 1975; 148(3): 439–45PubMedGoogle Scholar
  88. 88.
    de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int 2001; 119(2): 149–54PubMedCrossRefGoogle Scholar
  89. 89.
    Bøhmer T, Eiklid K, Jonsen J. Carnitine uptake into human heart cells in culture. Biochim Biophys Acta 1977; 465(3): 627–33PubMedCrossRefGoogle Scholar
  90. 90.
    Bahl J, Navin T, Manian AA, et al. Carnitine transport in isolated adult rat heart myocytes and the effect of 7,8-diOH chlorpromazine. Circ Res 1981; 48(3): 378–85PubMedCrossRefGoogle Scholar
  91. 91.
    Xuan W, Lamhonwah AM, Librach C, et al. Characterization of organic cation/carnitine transporter family in human sperm. Biochem Biophys Res Commun 2003; 306(1): 121–8PubMedCrossRefGoogle Scholar
  92. 92.
    Tamai I, Ohashi R, Nezu JI, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 2000; 275(51): 40064–72PubMedCrossRefGoogle Scholar
  93. 93.
    Tamai I, Ohashi R, Nezu J, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 1998; 273(32): 20378–82PubMedCrossRefGoogle Scholar
  94. 94.
    Wu X, Huang W, Prasad PD, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther 1999; 290(3): 1482–92PubMedGoogle Scholar
  95. 95.
    Nakanishi T, Hatanaka T, Huang W, et al. Na+− and Clt—coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol 2001; 532 (Pt 2): 297–304PubMedCrossRefGoogle Scholar
  96. 96.
    Taylor PM. Absorbing competition for carnitine. J Physiol 2001; 532 (Pt 2): 283PubMedCrossRefGoogle Scholar
  97. 97.
    Tsuchida H, Anzai N, Shin HJ, et al. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem 2010; 25(4–5): 511–22PubMedCrossRefGoogle Scholar
  98. 98.
    Ahmad S. Carnitine, kidney and renal dialysis. In: Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: from function to therapy. New York: Academic Press, 1992: 381–400Google Scholar
  99. 99.
    Guder WG, Wagner S. The role of the kidney in carnitine metabolism. J Clin Chem Clin Biochem 1990; 28(5): 347–50PubMedGoogle Scholar
  100. 100.
    Hokland BM, Bremer J. Metabolism and excretion of carnitine and acylcarnitines in the perfused rat kidney. Biochim Biophys Acta 1986; 886(2): 223–30PubMedCrossRefGoogle Scholar
  101. 101.
    Suzuki Y, Masumura Y, Kobayashi A, et al. Myocardial carnitine deficiency in chronic heart failure [letter]. Lancet 1982; 1(8263): 116PubMedCrossRefGoogle Scholar
  102. 102.
    Rebouche CJ, Lombard KA, Chenard CA. Renal adaptation to dietary carnitine in humans. Am J Clin Nutr 1993; 58(5): 660–5PubMedGoogle Scholar
  103. 103.
    Rebouche CJ, Mack DL. Sodium gradient-stimulated transport of L-carnitine into renal brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Arch Biochem Biophys 1984; 235(2): 393–402PubMedCrossRefGoogle Scholar
  104. 104.
    Rebouche CJ. Quantitative estimation of absorption and degradation of a carnitine supplement by human adults. Metabolism 1991; 40(12): 1305–10PubMedCrossRefGoogle Scholar
  105. 105.
    Harper P, Elwin CE, Cederblad G. Pharmacokinetics of bolus intravenous and oral doses of L-carnitine in healthy subjects. Eur J Clin Pharmacol 1988; 35(1): 69–75PubMedCrossRefGoogle Scholar
  106. 106.
    Huth PJ, Shug AL. Properties of carnitine transport in rat kidney cortex slices. Biochim Biophys Acta 1980; 602(3): 621–34PubMedCrossRefGoogle Scholar
  107. 107.
    Brady PS, Ramsey RR, Brady LJ. Regulation of the long-chain carnitine acyltransferases. FASEB J 1993; 7(11): 1039–44PubMedGoogle Scholar
  108. 108.
    Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and patho-logical conditions. Basic Res Cardiol 2000; 95(2): 75–83PubMedCrossRefGoogle Scholar
  109. 109.
    Chien D, Dean D, Saha AK, et al. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. Am J Physiol Endocrinol Metab 2000; 279(242–2): E259–65PubMedGoogle Scholar
  110. 110.
    McGarry JD, Stark MJ, Foster DW. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem 1978; 253(22): 8291–3PubMedGoogle Scholar
  111. 111.
    Peluso G, Petillo O, Margarucci S, et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. J Cell Physiol 2005; 203(2): 439–46PubMedCrossRefGoogle Scholar
  112. 112.
    Mancinelli A, Longo A, Shanahan K, et al. Disposition of L-carnitine and acetyl-L-carnitine in the isolated perfused rat kidney. J Pharmacol Exp Ther 1995; 274(3): 1122–8PubMedGoogle Scholar
  113. 113.
    de Sousa C, English NR, Stacey TE, et al. Measurement of L-carnitine and acylcarnitines in body fluids and tissues in children and in adults. Clin Chim Acta 1990; 187(3): 317–28PubMedCrossRefGoogle Scholar
  114. 114.
    Bøhmer T, Rydning A, Solberg HE. Carnitine levels in human serum in health and disease. Clin Chim Acta 1974; 57(1): 55–61PubMedCrossRefGoogle Scholar
  115. 115.
    Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta 1972; 37: 235–43PubMedCrossRefGoogle Scholar
  116. 116.
    McGarry JD, Foster DW. An improved and simplified radio-isotopic assay for the determination of free and esterified carnitine. J Lipid Res 1976; 17(3): 277–81PubMedGoogle Scholar
  117. 117.
    Parvin R, Pande S. Microdetermination of (−)carnitine and carnitine acetyl-transferase activity. Anal Biochem 1977; 79(1–2): 190–201PubMedCrossRefGoogle Scholar
  118. 118.
    Pande SV, Caramancion MN. A simple radioisotopic assay of acetylcarnitine and acetyl-CoA at picomolar levels. Anal Biochem 1981; 112(1): 30–8PubMedCrossRefGoogle Scholar
  119. 119.
    Pande SV. Radioisotopic assay of acetylcarnitine and acetyl-CoA. Methods Enzymol 1986; 123: 259–63PubMedCrossRefGoogle Scholar
  120. 120.
    Bieber LL, Kerner J. Short-chain acylcarnitines: identification and quantitation. Methods Enzymol 1986; 123: 264–76PubMedCrossRefGoogle Scholar
  121. 121.
    Kerner J, Bieber LL. A radioisotopic-exchange method for quantification of short-chain (acid-soluble) acylcarnitines. Anal Biochem 1983; 134(2): 459–66PubMedCrossRefGoogle Scholar
  122. 122.
    Schmidt-Sommerfeld E, Penn D, Duran M, et al. Detection of inborn errors of fatty acid oxidation from acylcarnitine analysis of plasma and blood spots with the radioisotopic exchange-high-performance liquid chromatographic method. J Pediatr 1993; 122 (5 I): 708–14PubMedCrossRefGoogle Scholar
  123. 123.
    Schmidt-Sommerfeld E, Zhang L, Bobrowski PJ, et al. Quantitation of short-and medium-chain acylcarnitines in plasma by radioisotopic exchange/high-performance liquid chromatography. Anal Biochem 1995; 231(1): 27–33PubMedCrossRefGoogle Scholar
  124. 124.
    Minkler PE, Hoppel CL. Quantification of free carnitine, individual short-and medium-chain acylcarnitines, and total carnitine in plasma by high-performance liquid chromatography. Anal Biochem 1993; 212(2): 510–8PubMedCrossRefGoogle Scholar
  125. 125.
    Chace DH, di Perna JC, Mitchell BL, et al. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried post-mortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001; 47(7): 1166–82PubMedGoogle Scholar
  126. 126.
    Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol 1999; 14 Suppl. 1: S4–8PubMedGoogle Scholar
  127. 127.
    Wiley V, Carpenter K, Wilcken B. Newborn screening with tandem mass spectrometry: 12 months’ experience in NSW Australia. Acta Paediatr Suppl 1999; 88(432): 48–51PubMedCrossRefGoogle Scholar
  128. 128.
    Reuter SE, Evans AM, Faull RJ, et al. Impact of haemodialysis on individual endogenous plasma acylcarnitine concentrations in end-stage renal disease. Ann Clin Biochem 2005; 42(5): 387–93PubMedCrossRefGoogle Scholar
  129. 129.
    Minkler PE, Brass EP, Hiatt WR, et al. Quantification of carnitine, acetylcarnitine, and total carnitine in tissues by high-performance liquid chro-matography: the effect of exercise on carnitine homeostasis in man. Anal Biochem 1995; 231(2): 315–22PubMedCrossRefGoogle Scholar
  130. 130.
    Angsten G, Cederblad G, Meurling S. Reference ranges for muscle carnitine concentration in children. Ann Clin Biochem 2003; 40 (Pt 4): 406–10PubMedCrossRefGoogle Scholar
  131. 131.
    Marquis NR, Fritz IB. The distribution of carnitine, acetylcarnitine, and carnitine acetyltransferase in rat tissues. J Biol Chem 1965; 240: 2193–6PubMedGoogle Scholar
  132. 132.
    Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the dog. Arch Biochem Biophys 1983; 220(1): 60–70PubMedCrossRefGoogle Scholar
  133. 133.
    Lai HS, Chen Y, Chen WJ. Carnitine contents in remnant liver, kidney, and skeletal muscle after partial hepatectomy in rats: randomized trial. World J Surg 1998; 22(1): 42–7PubMedCrossRefGoogle Scholar
  134. 134.
    Violante S, Ijlst L, van Lenthe H, et al. Carnitine palmitoyltransferase 2: new insights on the substrate specificity and implications for acylcarnitine profiling. Biochem Biophys Acta 2010; 1802(9): 728–32PubMedCrossRefGoogle Scholar
  135. 135.
    Bøhmer T, Norum KR, Bremer J. The relative amounts of long-chain acylcarnitine, acetylcarnitine, and free carnitine in organs of rats in different nutritional states and with alloxan diabetes. Biochim Biophys Acta 1966; 125(2): 244–51CrossRefGoogle Scholar
  136. 136.
    Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997; 323(1): 1–12PubMedGoogle Scholar
  137. 137.
    Sim KG, Hammond J, Wilcken B. Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders. Clin Chim Acta 2002; 323(1–2): 37–58PubMedCrossRefGoogle Scholar
  138. 138.
    Ventura FV, Costa CG, Struys EA, et al. Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: An improved tool for the diag-nosis of fatty acid oxidation defects. Clin Chim Acta 1999; 281(1–2): 1–17PubMedCrossRefGoogle Scholar
  139. 139.
    Duran M, Mitchell G, de Klerk JBC. Octanoic academia and octanoylcarnitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. J Pediatr 1985; 107(3): 397–404PubMedCrossRefGoogle Scholar
  140. 140.
    Millington DS, Roe CR, Maltby DA. Characterization of new diagnostic acylcarnitines in patients with β-ketothiolase deficiency and glutaric aciduria type I using mass spectrometry. Biomed Environm Mass Spectrom 1987; 14(12): 711–6CrossRefGoogle Scholar
  141. 141.
    Morrow RJ, Rose ME. Isolation of acylcarnitines from urine: a comparison of methods and application to long-chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta 1992; 211(1–2): 73–81PubMedCrossRefGoogle Scholar
  142. 142.
    Brown NF, Mullur RS, Subramanian I, et al. Molecular characterization of L-CPT I deficiency in six patients: Insights into function of the native enzyme. J Lipid Res 2001; 42(7): 1134–42PubMedGoogle Scholar
  143. 143.
    Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res 2011; 90(2): 202–9PubMedCrossRefGoogle Scholar
  144. 144.
    Marquis NR, Francesconi RP, Villee CA. A role for carnitine and long chain acylcarnitine in the regulation of lipogenesis. Adv Enzyme Regul 1968; 6(C): 31–55PubMedCrossRefGoogle Scholar
  145. 145.
    Martin DB, Vagelos PR. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem 1962; 237(6): 1787–92PubMedGoogle Scholar
  146. 146.
    Numa S, Bortz WM, Lynen F. Regulation of fatty acid synthesis at the acetyl-CoA carboxylation step. Adv Enzyme Regul 1965; 3(C): 407–23CrossRefGoogle Scholar
  147. 147.
    Trumble GE, Smith MA, Winder WW. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem 1995; 231(1): 192–8PubMedCrossRefGoogle Scholar
  148. 148.
    Vagelos PR, Alberts AW, Martin DB. Studies on the mechanism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem 1963; 238(2): 533–40PubMedGoogle Scholar
  149. 149.
    Scholte HR, Luyt-Houwen IE, Vaandrager-Verduin MH. The role of the carnitine system in myocardial fatty acid oxidation: carnitine deficiency, failing mitochondria and cardiomyopathy. Basic Res Cardiol 1987; 82 Suppl. 1: 63–73PubMedGoogle Scholar
  150. 150.
    Fritz IB, Hsu MP. Studies on the control of fatty acid synthesis. 1: stimulation by (+) palmitylcarnitine of fatty acid synthesis in liver preparations from fed and fasted rats. J Biol Chem 1967; 242(5): 865–72PubMedGoogle Scholar
  151. 151.
    Fritz IB, Arrigoni-Martelli E. Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 1993; 14(10): 355–60PubMedCrossRefGoogle Scholar
  152. 152.
    Scholte HR, Jennekens FGI, Bouvy JJBJ. Carnitine palmitoyltransferase II deficiency with normal carnitine palmitoyltransferase I in skeletal muscle and leukocytes. J Neurol Sci 1979; 40(1): 39–51PubMedCrossRefGoogle Scholar
  153. 153.
    Scholte HR, Hülsmann WC, Luyt-Houwen IEM, et al. Carnitine palmitoyltransferase deficiencies. Biochem Soc Trans 1985; 13(4): 643–5PubMedGoogle Scholar
  154. 154.
    Echabe T, Requero MA, Goñi FM, et al. An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers. Eur J Biochem 1995; 231(1): 199–203PubMedCrossRefGoogle Scholar
  155. 155.
    Fritz IB, Marquis NR. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A 1965; 54(4): 1226–33PubMedCrossRefGoogle Scholar
  156. 156.
    Goñi FM, Requero MA, Alonso A. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett 1996; 390(1): 1–5PubMedCrossRefGoogle Scholar
  157. 157.
    Requero MA, Goñi FM, Alonso A. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine: a comparative study. Bio-chemistry 1995; 34(3): 10400–5Google Scholar
  158. 158.
    Requero MA, Gonzales M, Goñi FM, et al. Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers. FEBS Lett 1995; 357(1): 75–8PubMedCrossRefGoogle Scholar
  159. 159.
    Yamada KA, Kanter EM, Newatia A. Long-chain acylcarnitine induces Ca2+ efflux from the sarcoplasmic reticulum. J Cardiovasc Pharmacol 2000; 36(1): 14–21PubMedCrossRefGoogle Scholar
  160. 160.
    Kobayashi A, Watanabe H, Fujisawa S, et al. Effects of L-carnitine and palmitoylcarnitine on membrane fluidity of human erythrocytes. Biochim Biophys Acta 1989; 986(1): 83–8PubMedCrossRefGoogle Scholar
  161. 161.
    Cho KS, Proulx P. Lysis of erythrocytes by long-chain acyl esters of carnitine. Biochim Biophys Acta 1969; 193(1): 30–5PubMedCrossRefGoogle Scholar
  162. 162.
    Cho KS, Proulx P. Studies on the mechanism of hemolysis by acyl carnitines, lysolecithins and acyl cholines. Biochim Biophys Acta 1971; 225(2): 214–23PubMedCrossRefGoogle Scholar
  163. 163.
    Cho KS, Proulx P. Interactions of acyl carnitines and other lysins with erythrocytes and reconstituted erythrocyte lipoproteins. Biochim Biophys Acta 1973; 318(1): 50–60PubMedCrossRefGoogle Scholar
  164. 164.
    Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and con-tributes to insulin resistance. Cell Metab 2009; 9(4): 311–26PubMedCrossRefGoogle Scholar
  165. 165.
    Adams SH, Hoppel CL, Lok KH, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid β-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 2009; 139(6): 1073–81PubMedCrossRefGoogle Scholar
  166. 166.
    Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–83PubMedCrossRefGoogle Scholar
  167. 167.
    Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7(1): 45–56PubMedCrossRefGoogle Scholar
  168. 168.
    Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem 2006; 75: 367–401PubMedCrossRefGoogle Scholar
  169. 169.
    Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(3): 193–205PubMedCrossRefGoogle Scholar
  170. 170.
    Noland RC, Koves TR, Seiler SE, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009; 284(34): 22840–52PubMedCrossRefGoogle Scholar
  171. 171.
    Shah SH, Hauser ER, Bain JR, et al. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol 2009; 5(258): 1–7Google Scholar
  172. 172.
    Tai ES, Tan ML, Stevens RD, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010; 53: 757–67PubMedCrossRefGoogle Scholar
  173. 173.
    Redman LM, Huffman KM, Landerman LR, et al. Effect of caloric restriction with and without exercise on metabolic intermediates in nonobese men and women. J Clin Endocrinol Metab 2011; 96(2): E312–21PubMedCrossRefGoogle Scholar
  174. 174.
    Lum H, Sloane R, Huffman KM, et al. Plasma acylcarnitines are associated with physical performance in elderly men. J Gerontol A Biol Sci Med Sci 2011; 66A(5): 548–53CrossRefGoogle Scholar
  175. 175.
    Ferrari R, Merli E, Cicchitelli G, et al. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann N Y Acad Sci 2004; 1033:79–91PubMedCrossRefGoogle Scholar
  176. 176.
    Palacios HH, Yendluri BB, Parvathaneni K, et al. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease. CNS Neurol Disord Drug Targets 2011; 10(2): 149–62PubMedCrossRefGoogle Scholar
  177. 177.
    Rosca MG, Lemieux H, Hoppel CL. Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv Drug Deliv Rev 2009; 61(14): 1332–42PubMedCrossRefGoogle Scholar
  178. 178.
    Goa KL, Brogden RN. L-Carnitine: a preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Drugs 1987; 34(1): 1–24PubMedCrossRefGoogle Scholar
  179. 179.
    Famularo G, Matricardi F, Nucera E, et al. Carnitine deficiency: primary and secondary syndromes. In: de Simone C, Famularo G, editors. Carnitine today. Austin (TX): RG Landes Company, 1997: 119–61CrossRefGoogle Scholar
  180. 180.
    Rebouche CJ, Engel AG. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc 1983; 58(8): 533–40PubMedGoogle Scholar
  181. 181.
    Rodrigues Pereira R, Scholte HR, Luyt-Houwen IE, et al. Cardiomyopathy associated with carnitine loss in kidneys and small intestine. Eur J Pediatr 1988; 148: 193–7CrossRefGoogle Scholar
  182. 182.
    Vaz FM, Scholte HR, Ruiter J, et al. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum Genet 1999; 105(1–2): 157–61PubMedCrossRefGoogle Scholar
  183. 183.
    Treem WR, Stanley CA, Finegold DN, et al. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med 1988; 319(20): 1331–6PubMedCrossRefGoogle Scholar
  184. 184.
    Tang NL, Ganapathy V, Wu X, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet 1999; 8(4): 655–60PubMedCrossRefGoogle Scholar
  185. 185.
    Nezu J, Tamai I, Oku A, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 1999; 21(1): 91–4PubMedCrossRefGoogle Scholar
  186. 186.
    Wang Y, Ye J, Ganapathy V, et al. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A 1999; 96(5): 2356–60PubMedCrossRefGoogle Scholar
  187. 187.
    Stanley CA, DeLeeuw S, Coates PM, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol 1991; 30(5): 709–16PubMedCrossRefGoogle Scholar
  188. 188.
    Waber LJ, Valle D, Neill C, et al. Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 1982; 101(5): 700–5PubMedCrossRefGoogle Scholar
  189. 189.
    Shapira Y, Glick B, Harel S, et al. Infantile idiopathic myopathic carnitine deficiency: treatment with L-carnitine. Pediatr Neurol 1993; 9(1): 35–8PubMedCrossRefGoogle Scholar
  190. 190.
    Tanphaichitr V, Leelahagul P. Carnitine metabolism and human carnitine deficiency. Nutrition 1993; 9(3): 246–54PubMedGoogle Scholar
  191. 191.
    Turnbull DM, Bartlett K, Stevens DL, et al. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med 1984; 311(19): 1232–6PubMedCrossRefGoogle Scholar
  192. 192.
    Guarnieri G, Toigo G, Crapesi L, et al. Carnitine metabolism in chronic renal failure. Kidney Int 1987; 22 Suppl. 22: S116–27Google Scholar
  193. 193.
    Evans AM. Dialysis-related carnitine disorder and levocarnitine pharmacology. Am J Kidney Dis 2003; 41 (4 Suppl. 4): S13–26PubMedCrossRefGoogle Scholar
  194. 194.
    Rudman D, Sewell CW, Ansley JD. Deficiency of carnitine in cachectic cirrhotic patients. J Clin Invest 1977; 60(3): 716–23PubMedCrossRefGoogle Scholar
  195. 195.
    Krahenbuhl S. Carnitine metabolism in chronic liver disease. Life Sci 1996; 59(19): 1579–99PubMedCrossRefGoogle Scholar
  196. 196.
    Khan L, Bamji MS. Plasma carnitine levels in children with protein-calorie malnutrition before and after rehabilitation. Clin Chim Acta 1977; 75(1): 163–6PubMedCrossRefGoogle Scholar
  197. 197.
    de Simone C, Tzantzoglou S, Jirillo E, et al. L-Carnitine deficiency in AIDS patients. AIDS 1992; 6(2): 203–5PubMedCrossRefGoogle Scholar
  198. 198.
    Scholte HR, Stinis JT, Jennekens FG. Low carnitine levels in serum of pregnant women. N Engl J Med 1978; 299(19): 1079–80PubMedGoogle Scholar
  199. 199.
    Bernardini I, Rizzo WB, Dalakas M, et al. Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome. J Clin Invest 1985; 75(4): 1124–30PubMedCrossRefGoogle Scholar
  200. 200.
    Filipek PA, Juranek J, Nguyen MT, et al. Relative carnitine deficiency in autism. J Autism Dev Disord 2004; 34(6): 615–23PubMedCrossRefGoogle Scholar
  201. 201.
    Pepine CJ. The therapeutic potential of carnitine in cardiovascular disorders. Clin Ther 1991; 13(1): 2–21PubMedGoogle Scholar
  202. 202.
    Kelly GS. L-Carnitine: therapeutic applications of a conditionally-essential amino acid. Altern Med Rev 1998; 3(5): 345–60PubMedGoogle Scholar
  203. 203.
    Reuter SE, Evans AM. Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome: potential involvement of altered carnitine palmitoyltransferase-I activity. J Intern Med 2011; 270(1): 76–84PubMedCrossRefGoogle Scholar
  204. 204.
    Passeri M, Iannuccelli M, Ciotti G, et al. Mental impairment in aging: selection of patients, methods of evaluation and therapeutic possibilities of acetyl-L-carnitine. Int J Clin Pharmacol Res 1988; 8(5): 367–76PubMedGoogle Scholar
  205. 205.
    Passeri M, Cucinotta D, Bonati PA, et al. Acetyl-L-carnitine in the treatment of mildly demented elderly patients. Int J Clin Pharmacol Res 1990; 10(1–2): 75–9PubMedGoogle Scholar
  206. 206.
    Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 2003; 18(2): 61–71PubMedCrossRefGoogle Scholar
  207. 207.
    Wiseman LR, Brogden RN. Propionyl-L-carnitine. Drugs Aging 1998; 12(3): 243–50PubMedCrossRefGoogle Scholar
  208. 208.
    Brevetti G, Perna S, Sabba C, et al. Effect of propionyl-L-carnitine on quality of life in intermittent claudication. Am J Cardiol 1997; 79(6): 777–80PubMedCrossRefGoogle Scholar
  209. 209.
    Rossini M, di Munno O, Valentini G, et al. Double-blind, multicenter trial comparing acetyl L-carnitine with placebo in the treatment of fibromyalgia patients. Clin Exp Rheumatol 2007; 25(2): 182–8PubMedGoogle Scholar
  210. 210.
    Vermeulen RCW, Scholte HR. Exploratory open label, randomized study of acetyl- and propionylcarnitine in chronic fatigue syndrome. Psychosom Med 2004; 66(2): 276–82PubMedCrossRefGoogle Scholar
  211. 211.
    Ahluwalia NS, Bernad NG. A review of valproic acid-induced carnitine deficiency and replacement. J Pharm Technol 2001; 17(3): 81–3Google Scholar
  212. 212.
    Ohashi R, Tamai I, Yabuuchi H, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther 1999; 291(2): 778–84PubMedGoogle Scholar
  213. 213.
    Murakami K, Sugimoto T, Woo M, et al. Effect of L-carnitine supplementation on acute valproate intoxication. Epilepsia 1996; 37(7): 687–9PubMedCrossRefGoogle Scholar
  214. 214.
    Wanner C, Hörl WH. Carnitine abnormalities in patients with renal insufficiency: pathophysiological and therapeutical aspects. Nephron 1988; 50(2): 89–102PubMedCrossRefGoogle Scholar
  215. 215.
    Bartel LL, Hussey JL, Shrago E. Perturbation of serum carnitine levels in human adults by chronic renal disease and dialysis therapy. Am J Clin Nutr 1981; 34(7): 1314–20PubMedGoogle Scholar
  216. 216.
    Evans AM, Fornasini G. Pharmacokinetics of L-carnitine. Clin Pharmacokinet 2003; 42(11): 941–67PubMedCrossRefGoogle Scholar
  217. 217.
    Bøhmer T, Bergrem H, Eiklid K. Carnitine deficiency induced during intermittent haemodialysis for renal failure. Lancet 1978; 1(8056): 126–8PubMedCrossRefGoogle Scholar
  218. 218.
    Evans AM, Faull R, Fornasini G, et al. Pharmacokinetics of L-carnitine in patients with end-stage renal disease undergoing long-term hemodialysis. Clin Pharmacol Ther 2000; 68(3): 238–49PubMedCrossRefGoogle Scholar
  219. 219.
    Evans AM, Faull RJ, Nation RL, et al. Impact of hemodialysis on endogenous plasma and muscle carnitine levels in patients with end-stage renal disease. Kidney Int 2004; 66(4): 1527–34PubMedCrossRefGoogle Scholar
  220. 220.
    Sahajwalla CG, Helton ED, Purich ED, et al. Multiple-dose pharmacokinetics and bioequivalence of L-carnitine 330-mg tablet versus 1-g chewable tablet versus enteral solution in healthy adult male volunteers. J Pharm Sci 1995; 84(5): 627–33PubMedCrossRefGoogle Scholar
  221. 221.
    Rizza V, Lorefice R, Rizza N, et al. Pharmacokinetics of L-carnitine in human subjects. In: Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. London: Academic Press Limited, 1992: 63–77Google Scholar
  222. 222.
    Cao Y, Wang YX, Liu CJ, et al. Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers. Clin Invest Med 2009; 32(1): E13–9PubMedGoogle Scholar
  223. 223.
    Bain MA, Milne RW, Evans AM. Disposition and metabolite kinetics of oral L-carnitine in humans. J Clin Pharmacol 2006; 46(10): 1163–70PubMedCrossRefGoogle Scholar
  224. 224.
    Bach AC, Schirardin H, Sihr MO, et al. Free and total carnitine in human serum after oral ingestion of L-carnitine. Diabete Metab 1983; 9(2): 121–4PubMedGoogle Scholar
  225. 225.
    Pace S, Longo A, Toon S, et al. Pharmacokinetics of propionyl-L-carnitine in humans: evidence for saturable tubular reabsorption. Br J Clin Pharmacol 2000; 50(5): 441–8PubMedCrossRefGoogle Scholar
  226. 226.
    Kwon OS, Chung YB. HPLC determination and pharmacokinetics of endogenous acetyl-L-carnitine (ALC) in human volunteers orally administered a single dose of ALC. Arch Pharm Res 2004; 27(6): 676–81PubMedCrossRefGoogle Scholar
  227. 227.
    Mancinelli A, Longo A, Nation RL, et al. Disposition of L-carnitine and its short-chain esters, acetyl-L-carnitine and propionyl-L-carnitine, in the rat isolated perfused liver. Drug Metab Dispos 2000; 28(12): 1401–4PubMedGoogle Scholar
  228. 228.
    Sahajwalla CG, Helton ED, Purich ED, et al. Comparison of L-carnitine pharmacokinetics with and without baseline correction following administration of single 20-mg/kg intravenous dose. J Pharm Sci 1995; 84(5): 634–9PubMedCrossRefGoogle Scholar
  229. 229.
    Uematsu T, Itaya T, Nishimoto M, et al. Pharmacokinetics and safety of L-carnitine infused i.v. in healthy subjects. Eur J Clin Pharmacol 1988; 34(2): 213–6PubMedCrossRefGoogle Scholar
  230. 230.
    Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes: evidence for alterations in tissue carnitine transport. J Clin Invest 1984; 73(3): 857–67PubMedCrossRefGoogle Scholar
  231. 231.
    Gloggler A, Bulla M, Furst P. Kinetics of intravenously administered carnitine in haemodialysed children. J Pharm Biomed Anal 1990; 8(5): 411–4PubMedCrossRefGoogle Scholar
  232. 232.
    Vernez L, Dickenmann M, Steiger J, et al. Effect of L-carnitine on the kinetics of carnitine, acylcarnitines and butyrobetaine in long-term haemodialysis. Nephrol Dial Transplant 2006; 21(2): 450–8PubMedCrossRefGoogle Scholar
  233. 233.
    Fornasini G, Upton RN, Evans AM. A pharmacokinetic model for L-carnitine in patients receiving haemodialysis. Br J Clin Pharmacol 2007; 64(3): 335–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2012

Authors and Affiliations

  1. 1.School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideAustralia
  2. 2.Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideAustralia

Personalised recommendations