Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Developments in Physical Chemistry and Basic Principles of Extractive and Process Metallurgy in 1984

  • 62 Accesses

  • 9 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. A. Fine and D. R. Gaskell, editors, Second International Symposium on Metallurgical Slags and Fluxes, TMS-AIME, Warrendale, Pennsylvania, 1984.

  2. 2.

    Y. K. Rao and M. M. Al-Kahtany, “Reduction of Magnetite with Hydrogen: Part 2, Gas Mixtures,” Ironmaking Steelmaking, 11, (1984), pp. 34–40.

  3. 3.

    Y. K. Rao and M. M. Al-Kahtany, “Reduction of Magnetite with Hydrogen: Part 3, Nucleation and Growth,” ibid., pp. 88–94.

  4. 4.

    M. Moukassi, M. Gougeon, P. Steinmetz, B. Dupre, and C. Gleitzer, “Hydrogen Reduction of Wustite Single Crystals Doped with Mg, Mn, Ca, Al, Si,” Met. Trans. 15B, 1984, pp. 383–391.

  5. 5.

    S. Hayashi, Y. Iguchi, and J. Hirao, “Acceleration Effect of a Small Amount of Sulphur in Reducing Gas on the Reduction of Wustite and Its Interaction with That of CaO,” J. Japan Inst. Metals, 48 1948, pp. 383–390

  6. 6.

    D. H. St. John, S. P. Mathew, and P. C. Hayes, “The Breakdown of Dense Iron Layers on Wustite in CO/CO2 and H2/H2O Systems,” Met. Trans. 15B, 1984, pp. 701–708.

  7. 7.

    D. H. St. John, S. P. Hathew, and P. C. Hayes, “Establishment of Product Morphology during the Initial Stages of Wustite Reduction,” ibid., pp. 709–717.

  8. 8.

    H. Y. Sohn and P. C. Chaubal, “Rate Enhancement of the Gaseous Reduction of Iron Oxide Pellets by Pressure Cycling,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 387–395.

  9. 9.

    H. C. Park, Y. Sakai, S. Kimura, S. Tone, and T. Otaka, “A Rate Analysis for Oxidation of Porous Reduced Iron with Water Vapor,” J. Chem. Eng. Japan, 17, 1984, pp. 395–399.

  10. 10.

    J. Szekely, C. I. Lin, and H. Y. Sohn, “A Structural Mode for Gas-Solid Reactions with a Moving Boundary — V. An Experimental Study of the Reduction of Porous Nickel-Oxide Pellets with Hydrogen,” Chem. Eng. Sci., 28, 1973, pp. 1975–1989.

  11. 11.

    H. Y. Sohn and D. Kim, “The Law of Additive Reaction Times Applied to the Hydrogen Reduction of Porous Nickel-Oxide Pellets,” Met. Trans, 15B, 1984, pp. 403–406.

  12. 12.

    H. Y. Sohn, “The Law of Additive Reaction Times in Fluid-Solid Reactions,” ibid., pp. 89–96.

  13. 13.

    M. Chang and L. De Jonghe, “Whisker Growth in Reduction of Oxides,” ibid., pp. 685–694.

  14. 14.

    Y. Iguchi and J. Hirao, “Formation of Porous Nickel in the Reduction of NiO-MgO Solid Solution Dopes with FeO,” J. Japan Inst. Metals, 48, 1984, pp. 802–807.

  15. 15.

    Z. Asaki, K. Hajika, T. Tanabe, and Y. Kondo, “Oxidation of Nickel Sulfide,” Met. Trans., 15B, 1984, pp. 127–133.

  16. 16.

    Z. Asaki, M. Tosa, T. Tanabe, and Y. Kondo, “Oxidation Kinetics of Mixed Copper-Iron Sulfide at 1173 K,” Trans. Japan Inst. Metals, 25, 1985, pp. 487–496.

  17. 17.

    Z. Asaki and Y. Kondo, “Oxidation of Iron, Cobalt and Nickel Sulfides,” Metall. Rev. MMIJ, 1 (2), 1984, pp. 1–14.

  18. 18.

    A. Landsberg and R. D. Wilson, “A Study of the Mechanisms of the Salt Catalyzed Carbochlorination of Kaolin,” Met. Trans. 15B, 1984, pp. 695–700.

  19. 19.

    H. Y. Sohn and R. L. Braun, “Simultaneous Fluid-Solid Reactions in Porous Solids — II. Reactions between One Fluid and Two Solid Reactants,” Chem. Eng. Sci., 39, 1984, pp. 21–30.

  20. 20.

    H. Y. Sohn and R. L. Braun, “Effect of Internally Generated Bulk Flow on the Rates of Gas-Solid Reactions. 1. Development of an Approximate Solution,” Ind. Eng. Chem. Process Des. Dev., 23, 1984, pp. 685–691.

  21. 21.

    H. Y. Sohn and R. L. Braun, “Effect of Internally Generated Bulk Flow on the Rates of Gas-Solid Reactions. 2. Multiple Gas-Solid Reactions during the Gasification of Char in an Oil Shale Block,” ibid., pp. 691–696.

  22. 22.

    P. C. Hayes, “The Effect of Emergent Dislocations on the Kinetics of Decomposition of Solid Surfaces under Conditions of Chemical Reaction Control,” Met. Trans. 15B, 1984, pp. 591–594.

  23. 23.

    S. K. Kim and H. Y. Sohn, “Nonisothermal Analysis of the Oxidation Kinetics of Oil Shale Carbonaceous Residue,” Chem. Eng. Commun., 27, 1984, pp. 255–262.

  24. 24.

    H. Y. Sohn and D. Kim, “A Novel Process for Transforming Selected Metal Sulfides to Oxides without Emitting Sulfur-Containing Gaseous Pollutants,” Journal of Metals, 36 (1), 1984, pp. 67–73.

  25. 25.

    S. K. El-Rahaiby and Y. K. Rao, “Cell Measurements of the Reduction Potentials of Gas-Phase Emanating from PbS/CaO/C at Elevated Temperatures,” Met. Trans. 15B, 1984, pp. 19–22.

  26. 26.

    Y. Ueda, T. Nakamura, and F. Noguchi, “Direct Reduction of Zinc Sulfide,” Metall. Rev. MMIJ, 1 (2), 1984, pp. 70–83.

  27. 27.

    Y. K. Rao and H. G. Han, “Catalysis by Alkali Carbonates of Carbothermic Reduction of Magnetite Concentrates,” Ironmaking Steelmaking, 11, 1984, pp. 308–318.

  28. 28.

    A. R. Baker and V. Rajakumar, “Deoxidation of Molten Copper by an Impinging Jet of Reducing Gas,” Trans. Instn. Mining Metall., 92, 1983, pp. C179–186.

  29. 29.

    A. W. Cramb and G. R. Belton, “The Interfacial Kinetics of the Reaction of CO2 with Liquid Nickel,” Met. Trans. 15B, 1984, pp. 655–661.

  30. 30.

    T. Shibasaki, “Kinetics of the Iron Oxidation in the Continuous Converting Process,” Metall. Rev. MMIJ, 1 (1), 1984, pp. 118–133.

  31. 31.

    Y. K. Rao and H. G. Han, “Virtual Maximum Rates of the Slag-Fuming Process for the Recovery of Zinc,” pp. 805–822 of Ref. 1.

  32. 32.

    K. Kamiya et al., “Reduction of Molten Iron Oxide and FeO Bearing Slags by H2-Ar Plasma,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 7–16.

  33. 33.

    M. Sasabe and M. Uehara, “Reduction of Molten Oxide Mixture Containing Iron and Phosphorus Oxide at Temperature below the Melting Point of Metallic Iron,” ibid., pp. 34–39.

  34. 34.

    Y. Sasaki, S. Hara, D. R. Gaskell, and G. R. Belton, “Isotope Exchange Studies of the Rate of Dissociation of CO2 on Liquid Iron Oxides and CaO-Saturated Calcium Ferrites,” Met. Trans. 15B, 1984, pp. 563–571.

  35. 35.

    S. Ban-ya, Y. Iguchi, S. Nagata, and S. Yakamoto, “Kinetics of Water Vapor Dissolution in Molten Slags, pp. 609–623 of Ref. 1.

  36. 36.

    D. J. Zuliani, D. J. Sosinsky, and A. McLean, “Thermodynamic and Kinetic Aspects of Water Vapour Dissolution in Molten CaO-MgO-SiO2 Slags,” pp. 625–642 of Ref. 1.

  37. 37.

    G. R. Belton, “Interfacial Kinetics in the Reaction of Gases with Liquid Slags,” pp. 63–85 of Ref. 1.

  38. 38.

    K. Schwerdtfeger and R. Prange, “Interface Kinetics of Slag-Metal Reactions,” pp. 595–608 of Ref. 1.

  39. 39.

    M. Hino and S. Ban-ya, “Application of an A. C. Impedance Method to Study of the Reaction between Slag and Metal,” pp. 669–684 of Ref. 1.

  40. 40.

    Y. Kawai, R. Nakao, and K. Mori, “Dephosphorization of Liquid Iron by CaF-Base Fluxes,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 509–514.

  41. 41.

    D. G. C Robertson, B. Deo, and S. Ohguchi, “Multicomponent Mixed-Transport-Control Theory for. Kinetics of Coupled Slag/Metal and Slag/Metal/Gas Reactions: Application to Desulphurization of Molten Iron,” Ironmaking Steelmaking, 11, 1984, pp. 41–55.

  42. 42.

    K. G. Leewis, W. F. Caley, and C. R. Masson, “Electrochemically-Enhanced Oxygen Transfer and Desulfurization in a Gas-Glas-Metal System,” pp. 685–697 of Ref. 1.

  43. 43.

    S. Ohguchi and D. G. C. Robertson, “Kinetic Model for Refining by Submerged Powder Injection: Part 1. Transitory and Permanent-Contact Reactions,” Ironmaking Steelmaking, 11, 1984, pp. 262–273.

  44. 44.

    S. Ohguchi and D. G. C. Robertson, “Kinetic Model for Refining by Submerged Powder Injection: Part 2. Bulk-Phase Mixing, ibid., pp. 274–282.

  45. 45.

    S. Ohguchi, D. G. C Robertson, B. Deo, P. Grieveson, and J. H. E. Jeffes, “Simultaneous Dephosphorization and Desulphurization of Molten Pig Iron,” Ironmaking Steelmaking, ibid., pp. 202–213.

  46. 46.

    T. Shimoo, S. Ando, and H. Kimura, “Rates of MnO Reduction from CaO-Al2O3 Slags by Solid Carbon,” J. Japan Inst. Metals, 48, 1984, pp. 285–292.

  47. 47.

    T. Shimoo, S. Ando, and H. Kimura, “Rates of MnO Reduction from Silicate Slags with Solid Carbon,” ibid., pp. 922–929.

  48. 48.

    S. N. Sinha, H. Y. Sohn, and M. Nagamori, “Distribution of Lead between Copper and Matte and The Activity of PbS in Copper-Saturated Mattes,” Met. Trans. 15B, 1984, pp. 441–449.

  49. 49.

    S. N. Sinha, H. Y. Sohn, and M. Nagamori, “Activity of SnS in Copper-Saturated Mattes,” ibid., pp. 595–598.

  50. 50.

    C. R. Masson, “The Chemistry of Slags—An Overview,” pp. 3–44 of Ref. 1.

  51. 51.

    J. F. Elliott, “Slags for Metallurgical Processes,” pp. 45–61 of Ref. 1.

  52. 52.

    M. Blander and A. D. Pelton, “Analyses and Predictions of the Thermodynamic Properties of Multicomponent Slags,” pp. 295–304 of Ref. 1.

  53. 53.

    H. Gaye and J. Welfringer, “Modelling of the Thermodynamic Properties of Complex Metallurgical Slags,” pp. 357–375 of Ref. 1.

  54. 54.

    P. Sastri and A. K. Lahiri, “Application of the ‘Central Atoms’ Model to Aluminosilicate Melts,” pp. 377–391 of Ref. 1.

  55. 55.

    B. Björkman, G. Ericksson, and E. Rosén, “A Generalized Approach to the Flood-Knapp Structure Based Model for Binary Liquid Silicates: Application and Update for the PbO-SiO2 System,” Met. Trans. 15B, 1984, pp. 511–516.

  56. 56.

    A. D. Pelton and M. Blander, “Computer-Assisted Analysis of the Thermodynamic Properties and Phase Diagrams of Slags,” pp. 281–294 of Ref. 1.

  57. 57.

    M. J. Hollitt, “Mathematical Description of the Thermodynamics of Mixing of Binary and Ternary Liquid Silicates Using only Free Energies of Formation of Orthosilicates as Parameters,” pp. 319–346 of Ref. 1.

  58. 58.

    R. P. Goel and H. H. Kellogg, “Mathematical Description of the Thermochemical Properties of Iron-Silicate Slags Containing Lime,” pp. 347–355 of Ref. 1.

  59. 59.

    I. D. Sommerville and D. J. Sosinsky, “The Application of the Optical Basicity Concept to Metallurgical Slags,” pp. 1015–1026 of Ref. 1.

  60. 60.

    F. Tsukihashi et al., Thermodynamics of the Soda Slag System for Hot Metal Treatment,” pp. 89–106 of Ref. 1.

  61. 61.

    S. Ban-ya, M. Hino, and H. Takezoe, “Thermodynamics of FetO-Na2O, FetO-SiO2-Na2O, FetO-P2O5-Na2O and FetO-P2O5-SiO2-Na2O Slags in Equilibrium with Solid Iron,” pp. 395–416 of Ref. 1.

  62. 62.

    M. J. Hollitt, J. D. Cashion, and L. J. Brown, “Mossbauer Spectroscopic Study of Silica-Saturated Pb-Fe-O-SiO2 Slags,” pp. 961–974 of Ref. 1.

  63. 63.

    Y. Iguchi, M. Wako, S. Ban-ya, Y. Nishina, and T. Fuwa, “Raman Spectroscopic Study on The Structure of CaO-MeO-SiO2, MnO-SiO2, and FeO-SiO2 Slags,” pp. 975–983 of Ref. 1.

  64. 64.

    T. Nakamura, Y. Ueda, and F. Noguchi, “The Characterization of Slags Using Photoacoustic Spectroscopy,” pp. 1005–1013 of Ref 1.

  65. 65.

    T. Nakamura, F. Noguchi, Y. Ueda, and H. Ito, “Fundamental Studies on Characterization of Slags by Photoacoustic Spectroscopy,” J. Japan Inst. Metals, 48, 1984, pp. 391–396.

  66. 66.

    M. Yamane, Y. Kaneko, K. Mizoguchi, and Y. Suginohara, “Study on the Structural Analysis of CaO-SiO2-TiO2 Glasses by X-Ray Photoelectron Spectroscopy,” ibid., pp. 808–812.

  67. 67.

    R. G. Reddy and C. C. Acholonu, “Activity Coefficient of CuO0.5 in Alumina Saturated Iron Silicate Slags,” Met. Trans. 15B, 1984, pp. 345–349.

  68. 68.

    P. Sahoo and R. G. Reddy, “Activity Coefficient of Nickel Oxide in FeO-NiO-FeO1.5-AlO1.5-SiO2 Slag at 1573 K,” pp. 533–545 of Ref 1.

  69. 69.

    S. Tabuchi and N. Sano, “Thermodynamics of Phosphate and Phosphide in CaO-CaF2 Melts,” Met. Trans. 15B, 1984, pp. 351–356.

  70. 70.

    W. Dai, S. Seetharaman, and L.-I. Staffansson, “Phase-Relationships in the System Fe-Ni-O,” ibid., pp. 319–327.

  71. 71.

    I. Jimbo, S. Goto, and O. Ogawa, “Equilibria between Silica-Saturated Iron Silicate Slags and Molten Cu-As, Cu-Sb, and Cu-Bi Alloys,” ibid., pp. 535–541.

  72. 72.

    R. G. Reddy and C. C. Acholonu, “Distribution of Nickel Between Copper-Nickel and Alumina Saturated Iron Silicate Slags,” ibid., pp. 33–37.

  73. 73.

    M. Sánchez, J. Acũna, and A. A. Luraschi, “Experimental Study of Slag-Metal Equilibria,” pp. 757–775 of Ref. 1.

  74. 74.

    I. V. Kojo, P. A. Taskinen, and K. R. Lilius, “The Thermodynamics of Copper Fire-Refining by Sodium Carbonate,” pp. 723–737 of Ref. 1.

  75. 75.

    A. I. Taskinen, L. M. Toivonen, and T. T. Talonen, “Thermodynamics of Slags in Direct Lead Smelting,” pp. 741–756 of Ref. 1.

  76. 76.

    H. Suito and R. Inoue, “Phosphorus Distribution between MgO-Saturated CaO-FetO-SiO2-P2O5-MnO Slags and Liquid Iron,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 40–46.

  77. 77.

    H. Suito and R. Inoue, “Effects of Na2O and BaO Additions on Phosphorus Distribution between CaO-MgO-FetO-SiO2 Slags and Liquid Iron, ibid., pp. 47–53.

  78. 78.

    H. Suito and R. Inoue, “Manganese Equilibrium between Molten Iron and MgO-Saturated CaO-FetO-SiO2-MnO Slags,” ibid., pp. 257–265.

  79. 79.

    H. Suito and R. Inoue, “Thermodynamic Considerations on Manganese Equilibria between Liquid Iron and FetO-MnO-MOx (MOx = PO0.5, SiO2, AlO1.5, MgO, CaO) Slags,” ibid., pp. 301–307.

  80. 80.

    R. Inoue and H. Suito, “Equilibrium Distribution of Manganese between Carbon-Saturated Iron Melts and Soda- and Lime-Based Fluxes,” ibid., pp. 816–821.

  81. 81.

    M. Köhler and H.-J. Engeli, “Partition Equilibria of Tramp Elements between Iron Melts and Calcium-Calcium Halide Slags,” pp. 483–496 of Ref. 1.

  82. 82.

    T. Murayama and H. Wada, “Desulfurization and Dephosphorization Reactions of Molten Iron by Soda Ash Treatment,” pp. 135–152 of Ref. 1.

  83. 83.

    G. J. Kor, “Equilibria between Fe-Cu-Ni-Co-Mo Alloys and Slags of Varying Basicities at 1450°C,” pp. 107–128 of Ref. 1.

  84. 84.

    A. Yazawa, “Slag-Metal and Slag-Matte Equilibria and Their Process Implications,” pp. 701–720 of Ref. 1.

  85. 85.

    M.-G. Park, Y. Takeda, and A. Yazawa, “Equilibrium Relations between Liquid Copper, Matte and Calcium Ferrite Slag at 1523 K,” Trans. Japan Inst. Metals, 25 1984, pp. 710–715.

  86. 86.

    G. Sick and K. Schwerdtfeger, “A Contribution to the Thermodynamics of High-Temperature Digenite Cu2−yS,” Met. Trans. 15B, 1984, pp. 736–739.

  87. 87.

    N. Jacinto, M. Nagamori, and H. Y. Sohn, “Predominance Area Diagrams of the System Ni-So-O,” Trans. Instn. Mining Metall., 92, 1983, pp. C225–228.

  88. 88.

    N. Fukatsu and Z. Kozuka, “Phase Equilibria in the System Pb-S-O,” Metall. Rev. MMIJ, 1 (1), 1984, pp. 27–46.

  89. 89.

    P. C. Chaubal, T. J. O’Keefe, and A. E. Morris, “Sulphation and Removal of Zinc from Electric Steel-making Furnace Flue Dusts,” Ironmaking Steelmaking, 9, 1982, pp. 258–266.

  90. 90.

    D. M. Kundrat, M. Chochol, and J. F. Elliott, “Phase Relationships in the Fe-Cr-C System at Solidification Temperatures,” Metall. Trans. 15B, 1984, pp. 663–676.

  91. 91.

    T. Azakami and M. Hino, “Fundamental Studies on the Speiss Equilibrated with Metallic Lead Phase,” Metall. Rev. MMIJ, 1 (1), 1984, pp. 60–75.

  92. 92.

    D. R. Morris and F. R. Steward, “Energy Analysis of a Chemical Metallurgical Process,” Met. Trans. 15B, 1984, pp. 645–654

  93. 93.

    Anonymous, “Thermochemical Data for Steelmaking,” Ironmaking Steelmaking, 11, 1984, pp. 67–73.

  94. 94.

    M. Iwai, H. Majima, and Y. Awakura, “Oxidation of As(III) with Oxygen in Alkaline Solutions,” J. Japan Inst. Metals, 48, 1984, pp. 267–272.

  95. 95.

    M. Iwai, H. Majima, and Y. Awakura, “Oxidation of As(III) with Oxygen in Alkaline Solutions in the Presence of Cu(II),” ibid., pp. 272–277.

  96. 96.

    K. Tozawa and T. Nishimura, “Oxidation of As(III) to As(V) in Aqueous Solutions,” Metall. Rev. MMIJ, 1 (1), 1984, pp. 76–87.

  97. 97.

    T. Chmielewski and W. A. Charewicz, “The Oxidation of Fe(II) in Aqueous Sulphuric Acid under Oxygen Pressure,” Hydrometallurgy, 12, 1984, pp. 21–30.

  98. 98.

    B. Pesic and F. A. Olson, “Dissolution of Bornite in Sulfuric Acid Using Oxygen as Oxidant,” ibid., pp. 195–215.

  99. 99.

    C. Nuñez and F. Espiell, “Kinetic Study of Nonoxidative Leaching of Cinnabar Ore in Aqueous Hydrochloric Acid-Potassium Iodide Solutions,” Met. Trans. 15B, 1984, pp. 13–18.

  100. 100.

    Z.-M. Jin, G. W. Warren, and H. Henein, “Reaction Kinetics of the Ferric Chloride Leaching of Sphalerite—An Experimental Study,” Met. Trans. 15B, 1984, pp. 5–12.

  101. 101.

    K. Arai and J. M. Toguri, “Leaching of Lead Sulphate in Sodium Carbonate Solution,” Hydrometallurgy, 12, 1984, pp. 49–59.

  102. 102.

    G. J. Harloff and M. M. Landau, “Trace Metal Migration Transport with Ion Exchange for Multi-Components and Multi-Substrates with Application to Radium Transport,” In Situ, 8 1984, pp. 401–433.

  103. 103.

    A. Okuwaki, O. Kanome, and T. Okabe, “The Precipitation of Ni3S2 from Sulfate Solutions,” Met. Trans. 15B, 1984, pp. 609–615.

  104. 104.

    K. Inoue, M. Goya, and M. Taniguchi, “Extraction Equilibrium and Extraction Kinetics of Nickel from Aqueous Ammonium Nitrate Solution with Versatic 10 in n-Hexane,” Hydrometallurgy, 13, 1984, pp. 155–167.

  105. 105.

    R. T. Kimura, P. A. Haunschild, and K. C. Liddell, “A Mathematical Model for Calculation of Equilibrium Solution Speciations for the FeCl3-FeCl2-CuCl2-CuCl-HCl-NaCl-H2O System at 25°C,” Met. Trans. 15B, 1984, pp. 213–219.

  106. 106.

    G. W. Warren, B. Drouven, and D. W. Price, “Relationships between the Pourbaix Diagram for Ag-S-H2O and Electrochemical Oxidation and Reduction of Ag2S,” ibid., pp. 235–242.

  107. 107.

    M. Eguchi, S. Okada, and A. Yazawa, “Phase Relation and Solubility Isotherm in the System ZnSO4-H2O-C2H5OH,” Metall. Rev. MMIJ, 1, (2), 1984, pp. 54–69.

  108. 108.

    C. K. Yun, “A Mathematical Description of the Extraction Isotherms of Tungsten and Sulfuric Acid in a Ternary Amine,” Hydrometallurgy, 12, 1984, pp. 289–298.

  109. 109.

    J.-S. Horng and J.-R. Maa, “Extraction Equilibrium Model for the Uranyl Nitrate-Nitric Acid-1 M Di-n-Heptyl Sulphoxide-1,1,2-Trichlorethane System,” ibid., pp. 355–364.

  110. 110.

    J.-S. Horng, “Semiempirical Model for Liquid-Liquid Extraction Equilibrium of UO2(NO3)2-TBP-Kerosene System in Acid Medium,” Ind. Eng. Chem, Process Des. Dev., 23, 1984, pp. 603–609.

  111. 111.

    K. Inoue and H. Tsunomachi, “Solvent Extraction Equilibria of Copper and Nickel with SME 529,” Hydrometallurgy, 13, 1984, pp. 73–87.

  112. 112.

    M. Matsumoto, K. Yoshizuka, K. Kondo, and F. Nakashio, “Extraction Equilibria of Copper and Zinc with N-8-Quinolylsulfonamides,” J. Chem. Eng. Japan, 17, 1984, pp. 89–93.

  113. 113.

    K. Osseo-Asare and D. R. Renninger, “Synergic Extraction of Nickel and Cobalt by LIX 63-Dinonylnaphthalene Sulfonic Acid Mixtures,” Hydrometallurgy, 13, 1984, pp. 45–62.

  114. 114.

    D. B. Dreisinger and W. C. Cooper, “The Solvent Extraction Separation of Cobalt and Nickel Using 2-Ethylhexylphosphonic Acid Mono-2-Ethylhexyl Ester,” ibid., pp. 1–20.

  115. 115.

    I. Komasawa, T. Otake, and Y. Ogawa, “The Effect of Diluent in the Liquid-Liquid Extraction of Cobalt and Nickel Using Acidic Organophosphorus Compounds,” J. Chem. Eng. Japan, 17, 1984, pp. 410–417.

  116. 116.

    A. M. Sastre and M. Muhammed, “The Extraction of Zinc(II) from Sulphate and Perchlorate Solutions by Di-(2-Ethylhexyl) Phosphoric Acid Dissolved in Isopar-H,” Hydrometallurgy, 12, 1984, pp. 177–193.

  117. 117.

    T. Sato, T. Shimomura, S. Murakami, T. Maeda, and T. Nakamura, “Liquid-Liquid Extraction of Divalent Manganese, Cobalt, Copper, Zinc and Cadmium from Aqueous Chloride Solutions by Tricaprylmethyl-ammonium chloride,” ibid., pp. 245–254.

  118. 118.

    T. Kataoka, T. Nishiki, and K. Ueyama, “Extraction Equilibria of Mercury(II) from Acidic Chloride Solutions with Trioctylamine,” J. Chem. Eng. Japan, 17, 1984, pp. 351–355.

  119. 119.

    G. S. Dai, B. Y. Xuan, and Y. F. Su, “Separation of Tungsten and Molybdenum in Dilute Hydrochloric Acid Solution by Extraction with Sulfoxides,” Hydrometallurgy, 13, 1984, pp. 137–153.

  120. 120.

    R. R. Grinstead, “Selective Absorption of Copper, Nickel, Cobalt and Other Transition Metal Ions from Sulfuric Acid Solutions with the Chelating Ion Exchange Resin XFS 4195,” ibid., pp. 387–400.

  121. 121.

    M. Abe and K. Hayashi, “Synthetic Inorganic Ion-Exchange Materials. XXXIV. Selective Separation of Lithium from Seawater by Tin(IV) Antimonate Cation Exchanger,” ibid., pp. 83–93.

  122. 122.

    V. Jiricny and J. W. Evans, “Fluidized-Bed Electrodeposition of Zinc,” Met. Trans. 15B, 1984, pp. 623–631.

  123. 123.

    T. Oki and T. Choh, “Direct Suspension Electrolysis of Zinc and Lead Sulfides in Chloride Molten Salts,” Metall. Rev. MMIJ, 1 (2) 1984, pp. 93–108.

  124. 124.

    N. El-Kaddah, J. Szekely, and G. Carlsson, “Fluid Flow and Mass Transfer in an Inductively Stirred Four-Ton Melt of Molten Steel: A Comparison of Measurements and Predictions,” Met. Trans. 15B, 1984, pp. 633–640.

  125. 125.

    N. El-Kaddah, J. McKelliget, and J. Szekely, “Heat Transfer and Fluid Flow in Plasma Spraying,” ibid., P. 59–70.

  126. 126.

    N. El-Kaddah and J. Szekely, “Heat and Fluid Flow Phenomena in a Levitation Melted Sphere under Zero Gravity Conditions,” ibid., pp. 183–186.

  127. 127.

    S. C. Koria and K. W. Lange, “A New Approach to Investigate the Drop Size Distribution in Basic Oxygen Steelmaking,” ibid., pp. 109–116.

  128. 128.

    P. Hammerschmid et al., “Vortex Formation during Drainage of Metallurgical Vessels,” Ironmaking Steelmaking, 11, 1984, pp. 332–339.

  129. 129.

    A. L. Maples and D. R. Poirier, “Convection in the Two-Phase Zone of Solidifying Alloys,” Met. Trans. 15B, 1984, pp. 163–172.

  130. 130.

    C. P. Hong, T. Umeda, and Y. Kimura, “Numerical Models for Casting Solidification: Part 1. The Coupling of the Boundary Element and Finite Difference Methods for Solidification Problems,” ibid., pp. 91–99.

  131. 131.

    C. P. Hong, T. Umeda, and Y. Kimura, “Numerical Models for Casting Solidification: Part II. Application of the Boundary Element Method to Solidification Problems,” ibid., pp. 101–107.

  132. 132.

    T. A. Apollova, E. L. Dubinin, M. M. Mit’ko, A. I. Chegodayev, and L. L. Bezukladnikova, “Surface Tension and Density of Melts of Platinum with Iridium,” Russ. Metall., 6, 1983, pp. 38–40.

  133. 133.

    K. Ogino, A. Nishiwaki, and Y. Hosotani, “Density of Molten Fe-C Alloys,” J. Japan Inst. Metals, 48, 1984, pp. 1004–1010.

  134. 134.

    A. V. Kovalevskii, I. F. Nichkov, and V. I. Shishalov, “Electric Conductivity, Density, and Surface Tension in Molten Mixtures of Lithium and Potassium Chlorides with Praseodymium Chloride,” Soviet Non-Ferrous Metals Res., 11, 1983, pp. 301–303.

  135. 135.

    I. B. Bobylev and V. N. Anfilogov, “A Method for Calculation of the Density of Molten Slags,” Russ. Metall., 4, 1983, pp. 31–36.

  136. 136.

    J. M. Berger and R. Winand, “Solubilities, Densities and Electrical Conductivities of Aqueous Copper (I) and Copper(H) Chlorides in Solutions Containing Other Chlorides Such as iron, Zinc, Sodium, and Hydrogen Chlorides,” Hydrometallurgy, 12, 1984, pp. 61–81.

  137. 137.

    T. V. Valueva and B. V. Patrov, “Electrocapillary Effects in Systems Based on Lead and Molten Lithium and Potassium Chlorides with the Addition of Alkali-Metal Carbonates,” Soviet Non-Ferrous Metals Res., 11, 1983, pp. 323–325.

  138. 138.

    H. Gaye, L. D. Lucas, M. Olette, and P. V. Riboud, “Metal-Slag Interfacial Properties: Equilibrium Values and ‘Dynamic’ Phenomena,” Can. Metall. Quart., 23, 1984, pp. 179–191.

  139. 139.

    H.-Y. Chang and G. Simkovich, “Iron-Slag Interaction in Continuous Casting Molds,” pp. 219–233 of Ref. 1.

  140. 140.

    K. Ogino, S. Hara, T. Miwa, and S. Kimoto, “The Effect of Oxygen Content in Molten Iron on the Interfacial Tension between Molten Iron and Slag,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 522–531.

  141. 141.

    I. I. Trifonov, G. A. Lebedev, V. I. Kuz’mina, and T. A. Pobirchenko, “The PrCl3-LiCl-CaCl2 Ternary System,” Soviet Non-Ferrous Metals Res., 11, 1983, pp. 123–124.

  142. 142.

    N. N. Kurbatov, S. P. Raspopin, V. A. Strelov, and Yu. F. Chervinskii, “Ultrasonic Velocity and Adiabatic Compressibility in Melts of Uranium Tetrachloride with Lithium Chloride,” ibid., pp. 125–127.

  143. 143.

    K. Seki and F. Oeters, “Viscosity Measurements on Liquid Slags in the System CaO-FeO-Fe2O3-SiO2,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 445–454.

  144. 144.

    P. Drissen, H.-J. Engell, and D. Janke, “Viscosity of Steelmaking Slags at Elevated MgO Content,” pp. 583–592 of Ref. 1.

  145. 145.

    T. Yanagase, K. Morinaga, Y. Ohta, and T. Aiura, “Physical Properties of CaO-Al2O3-CaF2 Melts,” pp. 995–1004 of Ref. 1.

  146. 146.

    H. Ohta, Y. Waseda, and Y. Shiraishi, “Measurement of Thermal Conductivity of Molten Silicate by Means of Laser Flash Method,” pp. 863–873 of Ref. 1.

  147. 147.

    K. Nagata and K. S. Goto, “Heat Conductivity and Mean Free Path of Phonons in Metallurgical Slags,” pg. 875–889 of Ref. 1.

  148. 148.

    M. Kishimoto, M. Maeda, K. Mori and Y. Kawai, “Thermal Conductivity and Specific Heat of Metallurgical Slags,” pp. 891–905 of Ref. 1.

  149. 149.

    V. I. Deshko and G. B. Varlamov, “Thermal Conductivity of Melts in the Cryolite-Al2O3 System (Cryolite Ratio 2.7),” Soviet Non-Ferrous Metals Res., 10, 1982, pp. 371–375.

  150. 150.

    S. Otsuka, Z. Kozuka, and Y. A. Chang, “Oxygen Solubility in Liquid Indium and Oxygen Diffusivity in Liquid Indium and Tin,” Met. Trans. 15B, 1984, pp. 329–335.

  151. 151.

    M. Kishimoto S. Fujii, K. Mori, and Y. Kawai, “Interdiffusivity of CaO-FeO in the Liquid CaO-FeO-SiO2 System,” Trans. Iron Steel Inst. Japan, 24, 1984, pp. 197–204.

  152. 152.

    M. Kishimoto, S. Mishima, K. Mori, and Y. Kawai, “Interdiffusivity of FeO-MnO in FeO-MnO-SiO2 Melts,” J. Japan Inst. Metals, 48, 1984, pp. 793–797.

  153. 153.

    J. Bouteillon and A. Marguier, “A Study of the Electrochemical Reduction of AlCl3 in an NaCl-KCl Equimolar Mixture,” Surface Technol. 22, 1984, pp. 205–217.

  154. 154.

    E. A. Klimenkov, G. V. Tyagunov, B. A. Baum, and V. N. Epin, “Influence of Carbon and Oxygen Impurities on High-Temperature Electrical Resistance of Iron,” Russ. Metall., 3, 1983, pp. 33–37.

  155. 155.

    G. S. Victorovich, C. Diaz, and D. K. Vallbacka, “Electrical Conductivity of Ferromagnesian Silicates,” pp. 907–924 of Ref. 1.

  156. 156.

    L. Segers, A. Fontana, and R. Winand, “Electrical Conductivity of Molten Slags of the System SiO2-Al2O3-MnO-CaO-MgO,” Can. Metall. Quart., 22, 1983, pp. 429–435.

  157. 157.

    S. Hara, H. Hashimoto, and K. Ogino, “Electrical Conductivity of Molten Slags for Electro-Slag Remelting,” Trans. Iron Steel Inst. Japan, 23, 1983, pp. 1053–1058.

  158. 158.

    S. F. Belov, M. S. Igumnov, Yu. G. Bushuev, E. B. Malysheva, and N. A. Nikonova, “Chemical Reactions and Electric Conductivity in the Na2WO4-WO3, K2WO4-WO3, and Na2WO4-K2WO4 Systems,” Soviet Non-Ferrous Metals Res. 11, 1983, pp. 208–211.

  159. 159.

    S. F. Belov, M. S. Igumnov, Yu. G. Busuev, I. A. Rozdin, and E. B. Malysheva, “Electric Conductivity of KCl-Me2MoO4 and NaCl-Me2MoO4 Melts (Me = Li, Na, K),” ibid., pp. 376–378.

  160. 160.

    R. Celmer, M. Yamamoto, and J. M. Toguri, “Vapour Pressure of Arsenic,” Can. Metall. Quart., 23, 1984, pp. 169–172.

  161. 161.

    D. S. Conochie, C. Ebiogwu, and D. G. C. Robertson, “Oxygen Solubility in Molten Lead,” Trans. Instn. Mining Metall., 93, 1984, pp. C45–48.

  162. 162.

    M. Mitra and K. W. Lange, “Hydrogen Solubility in Liquid Iron-Cobalt-Silicon System,” Ironmaking Steelmaking, 11, 1984, pp. 74–82.

  163. 163.

    E. T. Turkdogan and L. J. Martonik, “Sulfur Solubility in Iron-Carbon Melts Coexistent with Solid CaO and CaS,” Trans. Iron Steel Inst. Japan, 23, 1983, pp. 1038–1044.

  164. 164.

    I. Ghita and H. B. Bell, “Sulphide Capacity of Slags Containing FeO, CaO, TiO2, and SiO2,” Ironmaking Steelmaking, 9, 1984, pp. 239–243.

  165. 165.

    N. Yamato and K. S. Goto, “Measurement of Solubility of CO2 in Na2O-P2O5-SiO2 Ternary Melt Using a Thermobalance,” J. Japan Inst. Metals, 48, 1984, pp. 983–989.

  166. 166.

    H. Numata and J. O’M. Bockris, “Interactions of Gases in Molten Salts: Carbon Dioxide and Oxygen in Cryolite Alumina Melts,” Met. Trans. 15B, 1984, pp. 39–46.

  167. 167.

    T. El Gammal and M. Waladan, “Thermo-Electric Dissociation of Water Vapor and Its Dissolution in Molten Slags and Fluxes,” pp. 453–465 of Ref. 1.

  168. 168.

    A. Mitchell and S. Chattopadhyay, “Oxide Ion Activity and Water Solubility in Fluoride-Based Slags,” pp. 561–571 of Ref. 1.

  169. 169.

    E. S. Huron and M. Hoch, “Minimum Solubility of Chromium in SiO2-CaO-Al2O3 Slags,” pp. 305–318 of Ref. 1.

  170. 170.

    S. I. Sobol, E. L. Patik, and V. K. Kulifeev, “Effect of Carbon Dioxide Pressure on the Solubility of Nickel and Cobalt Carbonates in Water,” Soviet Non-Ferrous Metals Res., 11, 1983, pp. 94–99.

  171. 171.

    L. Topor and O. J. Kleppa, “Thermochemistry of Binary Liquid Gold Alloys: The Systems Au-Ni, Au-Co, Au-Fe, and Au-Mn,” Met. Trans. 15B, 1984, pp. 573–580.

  172. 172.

    R. G. Coltters and G. R. Belton, “High Temperature Thermodynamic Properties of the Chromium Carbides Cr7C3 and Cr3C2 Determined Using a Galvanic Cell Technique,” ibid., pp. 517–521.

  173. 173.

    Y. E. Lee, “Thermodynamics of the MnO-SiO2 System,” pp. 427–440 of Ref. 1.

  174. 174.

    R. K. Dwivedi and D. A. R. Kay, “Thermodynamics of the Oxidation of Rare Earth Oxysulfides at High Temperatures,” Met. Trans. 15B, 1984, pp. 523–528.

  175. 175.

    E. H. Baker, “Palladium-Oxygen System in the Pressure Range 0.25–600 atm,” Trans. Instn. Mining Metall., 93, 1984, pp. C64–68.

  176. 176.

    S. Otsuka and Y. A. Chang, “Activity Coefficient of Oxygen in Copper-Sulfur Melts,” Met. Trans. 15B, 1984, pp. 337–344.

  177. 177.

    S. Otsuka, Y. Kurose, and Z. Kozuka, “Activities of Oxygen in Liquid Bi-Pb and Bi-Sb Alloys,” ibid., pp. 141–147.

  178. 178.

    E. Ichise and M. Iwase, “Activities of FexO in CaO-Based Metallurgical Fluxes Used for the External Dephosphorization of Hot Metal,” pp. 517–531 of Ref. 1.

  179. 179.

    T. Arato, M. Tokuda, and M. Ohtani, “Measurement of the Activity of FeTO in Na2O-CaO-SiO2-FeTO and CaO-CaCl2-FeTO Melts by the EMF Method,” Trans. Japan Inst. Metals, 25, 1984, pp. 649–656.

  180. 180.

    S. Yamaguchi and K. S. Goto, “Measurement of Activity of Na2O in Na2O-SiO2-P2O5 Ternary Melt Using Sodium Beta-Alumina as a Solid Electrolyte,” J. Japan Inst. Metals, 48, 1984, pp. 43–49.

  181. 181.

    R. J. Brisley and D. J. Fray, “The Determination of the Thermodynamics of the NaF-AlF3-Al2O3 System with a Solid Electrolyte Cell,” Met. Trans. 15B, 1984, pp. 135–139.

  182. 182.

    M. Itoh, E. Sugimoto, and Z. Kuzuka, “Solid Reference Electrode of SO2 Sensor Using β-Alumina Solid Electrolyte,” Trans. Japan Inst. Metals, 25 1984, pp. 504–510.

Download references

Additional information

Hong Yong Sohn received his PhD in chemical engineering from the University of California at Berkeley. He is a Professor in the Department of Metallurgy and Metallurgical Engineering at The University of Utah in Salt Lake City. He is a member of TMS-AIME and has served on its Board of Directors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sohn, H.Y. Developments in Physical Chemistry and Basic Principles of Extractive and Process Metallurgy in 1984. JOM 37, 51–57 (1985). https://doi.org/10.1007/BF03259447

Download citation

Keywords

  • Wustite
  • Liquid Iron
  • Iron Steel Inst
  • Whisker Growth
  • Molten Iron