Clinical Immunotherapeutics

, Volume 5, Issue 6, pp 420–437

Primary Biliary Cirrhosis

Immunopathogenesis and Optimum Management
  • Leslie Lilly
  • Carl L. Berg
  • John L. Gollan
Disease Management

Summary

Primary biliary cirrhosis is a well-characterised disorder of autoimmune origin whose exact pathogenesis remains poorly understood. Population studies have suggested an association with human leucocyte antigen (HLA)-DR8, and patients are universally positive for antimitochondrial antibodies; however, the clinical relevance of these observations is unclear. Other putative autoantigens have been proposed. Numerous abnormalities throughout the immune system as well as in complement pathways have been characterised, and major histocompatibility complex (MHC) expression on biliary epithelial cells is increased.

Consequently, drugs whose actions are primarily immunomodulatory have undergone testing in the therapy of primary biliary cirrhosis, but none have demonstrated particular promise. Ursodeoxycholic acid remains the therapy of choice, and it is believed to exert its beneficial effects by modifying bile salt pool content and kinetics, as well as possibly through immunological mechanisms. Improvement in biochemical and clinical parameters with ursodeoxycholic acid therapy is well recognised, and it also appears to improve hepatic histology and retard progression to transplantation or death. Antifibrotic therapy with colchicine has shown some promise in small studies; however, the results of larger clinical trials designed to examine its role in conjunction with ursodeoxycholic acid are not yet available.

Liver transplantation is the established treatment for end-stage primary biliary cirrhosis, and recurrent disease in the allograft has not been satisfactorily documented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindor KD, Hoofnagle J, Maddrey WC, et al. Primary biliary cirrhosis clinical research: single-topic conference. Hepatology 1996; 23: 639–44PubMedCrossRefGoogle Scholar
  2. 2.
    Fagan E, Williams R, Cox S. Primary biliary cirrhosis in mother and daughter. BMJ 1977; 2: 1195PubMedCrossRefGoogle Scholar
  3. 3.
    Kato Y, Suzuki K, Kumagai M, et al. Familial primary biliary cirrhosis. Immunological and genetic study. Am J Gastroenterol 1981; 75: 188–91PubMedGoogle Scholar
  4. 4.
    James OF, Myszor M. Epidemiology and genetics of primary biliary cirrhosis. Prog Liver Dis 1990; 9: 523–36PubMedGoogle Scholar
  5. 5.
    Walker JG, Bates D, Doniach D, et al. Chronic liver disease and mitochondrial antibodies: a family study. BMJ 1972; 1: 146–8PubMedCrossRefGoogle Scholar
  6. 6.
    Galbraith RM, Smith M, Mackenzie RM, et al. High prevalence of seroimmunologic abnormalities in relatives of patients with active chronic hepatitis or primary biliary cirrhosis. N Engl J Med 1974; 290: 63–9PubMedCrossRefGoogle Scholar
  7. 7.
    Tsuji H, Murai K, Akagi M, et al. Familiar primary biliary cirrhosis associated with impaired concanavalin A-induced lymphocyte transformation in relatives. Two family studies. Dig Dis Sci 1992; 37: 353–60PubMedCrossRefGoogle Scholar
  8. 8.
    Underhill J, Donaldson P, Bray G, et al. Susceptibility to primary biliary cirrhosis is associated with the HLA-DR8-DQB1 *0402 haplotype. Hepatology 1992; 16: 1404–8PubMedCrossRefGoogle Scholar
  9. 9.
    Miyamori H, Kato Y, Koboyashi K, et al. HLA antigens in Japanese patients with primary biliary cirrhosis and autoimmune hepatitis. Digestion 1983; 26: 213–7PubMedCrossRefGoogle Scholar
  10. 10.
    Ercilla G, Pares A, Arriga F, et al. Primary biliary cirrhosis associated with HLA DR3. Tissue Antigens 1979; 14: 449–52PubMedCrossRefGoogle Scholar
  11. 11.
    Hamlyn AN, Adams D, Sherlock S. Primary or secondary sicca complex? Investigation in primary biliary cirrhosis by histocompatibility testing. BMJ 1980; 281: 425–6PubMedCrossRefGoogle Scholar
  12. 12.
    Morling N, Dalhoff K, Fugger L, et al. DNA polymorphisms of HLA class II genes in primary biliary cirrhosis. Immunogenetics 1992; 35: 112–6PubMedGoogle Scholar
  13. 13.
    Bassendine MF, Dewar PJ, James OF. HLA-DR antigens in primary biliary cirrhosis: lack of association. Gut 1985; 26: 625–8PubMedCrossRefGoogle Scholar
  14. 14.
    Johnston DE, Kaplan MM, Miller KB, et al. Histocompatibility antigens in primary biliary cirrhosis. Am J Gastroenterol 1987; 82: 1127–9PubMedGoogle Scholar
  15. 15.
    Fugger L, Morling N, Ryder LP, et al. Restriction length fragment polymorphism of two HLA-B-associated transcripts genes in five autoimmune diseases. Hum Immunol 1991; 30: 27–31PubMedCrossRefGoogle Scholar
  16. 16.
    Gores GJ, Moore SB, Fisher LD, et al. Primary biliary cirrhosis: association with class II major histocompatability complex antigens. Hepatology 1987; 7: 889–92PubMedCrossRefGoogle Scholar
  17. 17.
    Manns MP, Bremm A, Schneider PM, et al. HLA Drw8 and complement C4 deficiency as risk factors in primary biliary cirrhosis. Gastroenterology 1991; 101: 1367–73PubMedGoogle Scholar
  18. 18.
    Gregory WL, Mehal W, Dunn AN, et al. Primary biliary cirrhosis: contribution of HLA class II allele DR8. Q J Med 1993; 86: 393–9PubMedGoogle Scholar
  19. 19.
    Prochazka EJ, Terasaki PI, Park MS, et al. Association of primary sclerosing cholangitis with HLA DRw52a. N Engl J Med 1990; 322: 1842–4PubMedCrossRefGoogle Scholar
  20. 20.
    Maeda T, Onishi S, Saibara T, et al. HLA DRw8 and primary biliary cirrhosis. Gastroenterology 1992; 103: 1118–9PubMedGoogle Scholar
  21. 21.
    Seki T, Kiyosawa K, Ota M, et al. Association of primary biliary cirrhosis with human leukocyte antigen DPB1*0501 in Japanese patients. Hepatology 1993; 18: 73–8PubMedCrossRefGoogle Scholar
  22. 22.
    Lindgren S, Kockum I, Lernmark A, et al. HLA DR gene polymorphism in primary biliary cirrhosis [abstract]. J Hepatol 1991; 13 Suppl. 2: 165Google Scholar
  23. 23.
    Wands JR, Dienstag JL, Bhan AK, et al. Circulating immune complexes and complement activation in primary biliary cirrhosis. N Engl J Med 1978; 298: 233–7PubMedCrossRefGoogle Scholar
  24. 24.
    Briggs DC, Donaldson PT, Hayes P, et al. A major histocompatibility complex class II allotype (C4B2) associated with primary biliary cirrhosis (PBC). Tissue Antigens 1987; 29: 141–5PubMedCrossRefGoogle Scholar
  25. 25.
    Mehal WZ, Gregory W, Cross SJ, et al. Complement C4B2 and HLA DR8 genotyping explains their known association in PBC [abstract]. Hepatology 1993; 18: 216ACrossRefGoogle Scholar
  26. 26.
    Vuoristo M, Farkkila M, Gylling H, et al. Apolipoprotein E (apoE) polymorphism in primary biliary cirrhosis related to expression of PBC and response to treatment [abstract]. Gastroenterology 1995; 106: A364Google Scholar
  27. 27.
    Walker JG, Doniach D, Roitt IM, et al. Serological tests in diagnosis of primary biliary cirrhosis. Lancet 1965; 1: 827–31PubMedCrossRefGoogle Scholar
  28. 28.
    Berg PA, Klein R, Lindenborn-Fotinos J, et al. ATPase-associated antigen (M2): marker antigen for serological diagnosis of primary biliary cirrhosis. Lancet 1982; II: 1423–6CrossRefGoogle Scholar
  29. 29.
    Berg PA, Klein R, Lindenborn-Fotinos J. Antimitochondrial antibodies in primary biliary cirrhosis. J Hepatol 1986; 2: 123–31PubMedCrossRefGoogle Scholar
  30. 30.
    Chen QY, Rowley MJ, Mackay IR. Antibody to two forms of dihydrolipoamide acetyltransferase (PDC-E2) in primary biliary cirrhosis. Liver 1993; 13: 130–5PubMedGoogle Scholar
  31. 31.
    Klein R, Kloppel G, Garbe W, et al. Antimitochondrial antibody profiles determined at early stages of primary biliary cirrhosis can differentiate between a benign and a progressive form of the disease. A retrospective analysis of 76 patients over 6–18 years. J Hepatol 1991; 12: 21–7PubMedCrossRefGoogle Scholar
  32. 32.
    Weber P, Brenner J, Stechemesser E, et al. Characterization and clinical relevance of a new complement fixing antibody, anti-M8, in patients with primary biliary cirrhosis. Hepatology 1986; 6: 553–9PubMedCrossRefGoogle Scholar
  33. 33.
    Klein R, Kloppel G, Fischer R, et al. The antimitochondrial antibody anti-M9: a marker for the diagnosis of early primary biliary cirrhosis. J Hepatol 1988; 6: 299–306PubMedCrossRefGoogle Scholar
  34. 34.
    Mitchison HC, Bassendine MF, Hendrick A, et al. Positive antimitochondrial antibody but normal alkaline phosphatase: is this primary biliary cirrhosis? Hepatology 1986; 6: 1279–84PubMedCrossRefGoogle Scholar
  35. 35.
    Ben-Ari Z, Dhillon AP, Sherlock S. Autoimmune cholangiopathy: part of the spectrum of autoimmune chronic active hepatitis. Hepatology 1993; 18: 10–5PubMedCrossRefGoogle Scholar
  36. 36.
    Baum H, Berg PA. The complex nature of mitochondrial antibodies and their relation to primary biliary cirrhosis. Semin Liver Dis 1981; 1: 309–21PubMedCrossRefGoogle Scholar
  37. 37.
    Lindenborn-Fotinos J, Baum H, Berg PA. Mitochondrial antibodies in primary biliary cirrhosis: species and nonspecies specific determinants of M2 antigen. Hepatology 1985; 5: 763–9PubMedCrossRefGoogle Scholar
  38. 38.
    Fussey SP, Ali ST, Guest JR, et al. Reactivity of primary biliary cirrhosis sera with Escherichia coli dihydrolipoamide acetyltransferase (E2p): characterization of the main immunogenic region. Proc Natl Acad Sci USA 1990; 87: 3987–91PubMedCrossRefGoogle Scholar
  39. 39.
    Burroughs AK, Rosenstein KJ, Epstein O, et al. Bacteriuria and primary biliary cirrhosis. Gut 1984; 25: 133–7PubMedCrossRefGoogle Scholar
  40. 40.
    Butler P, Valle F, Hamilton-Miller JM, et al. M2 mitochondrial antibodies and urinary rough mutant bacteria in patients with primary biliary cirrhosis and in patients with recurrent bacteriuria. J Hepatol 1993; 17: 408–14PubMedCrossRefGoogle Scholar
  41. 41.
    Stemerowicz R, Hopf U, Moller B, et al. Are mitochondrial antigens in primary biliary cirrhosis induced by R-mutants of gram-negative bacteria? Lancet 1988; II: 1166–70CrossRefGoogle Scholar
  42. 42.
    Krams SM, Surh CD, Coppel RL, et al. Immunization of experimental animals with dihydrolipoamide acetyltransferase, as a purified recombinant polypeptide, generates mitochondrial antibodies but not primary biliary cirrhosis. Hepatology 1989; 9: 411–6PubMedCrossRefGoogle Scholar
  43. 43.
    Joplin R, Lindsay JG, Hubscher SG, et al. Distribution of dihydrolipoamide acetyltransferase (E2) in the liver and portal lymph nodes of patients with primary biliary cirrhosis: an immunohistochemical study. Hepatology 1991; 14: 442–7PubMedCrossRefGoogle Scholar
  44. 44.
    Van de Water J, Ansari AA, et al. Evidence for the targeting by 2-oxo-dehydrogenase enzymes in the T cell response of primary biliary cirrhosis. J Immunol 1991; 146: 89–94PubMedGoogle Scholar
  45. 45.
    Tobe K. Electron microscopy of liver lesions in primary biliary cirrhosis. I. Intrahepatic bile duct oncocytes. Acta Pathol Jpn 1982; 32: 57–70PubMedGoogle Scholar
  46. 46.
    Bernuau D, Feldmann G, Degott C, et al. Ultrastructural lesions of the bile ducts in primary biliary cirrhosis. A comparison with the lesions observed in graft versus host disease. Hum Pathol 1981; 12: 782–93PubMedCrossRefGoogle Scholar
  47. 47.
    Joplin RE, Johnson GD, Mathews JB, et al. Distribution of pyruvate dehydrogenase dihydrolipoamide acetyltransferase (PDC-E2) and another mitochondrial marker in salivary gland and biliary epithelium from patients with primary biliary cirrhosis. Hepatology 1994; 19: 1375–80PubMedCrossRefGoogle Scholar
  48. 48.
    Van de Water J, Turchany J, et al. Molecular mimicry in primary biliary cirrhosis. Evidence for biliary epithelial expression of a molecule cross-reactive with pyruvate dehydrogenase complex-E2. J Clin Invest 1993; 91: 2653–64PubMedCrossRefGoogle Scholar
  49. 49.
    Brenard R, Geubel AP. Antimitochondrial and antinuclear antibodies in primary biliary cirrhosis: an update in relation to their biochemical characterization and clinical significance. Acta Clin Belg 1991; 46: 305–12PubMedGoogle Scholar
  50. 50.
    Pawlotsky J-M, Andre C, Metreau J-M, et al. Multiple nuclear dots antinuclear antibodies are not specific for primary biliary cirrhosis. Hepatology 1992; 16: 127–31PubMedCrossRefGoogle Scholar
  51. 51.
    Worman HJ, Courvalin J-C. Autoantibodies against nuclear envelope proteins in liver disease. Hepatology 1991; 14: 1269–79PubMedCrossRefGoogle Scholar
  52. 52.
    Gerace L, Ottaviano Y, Kondor-Koch C. Identification of a major polypeptide of the nuclear pore complex. J Cell Biol 1982; 95: 826–37PubMedCrossRefGoogle Scholar
  53. 53.
    Wozniak RW, Bartnik E, Blobel G. Primary structure analysis of an integral mem brane glycoprotein of the nuclear pore. J Cell Biol 1989; 108: 2083–92PubMedCrossRefGoogle Scholar
  54. 54.
    Lozano F, Pares A, Borche L, et al. Autoantibodies against nuclear envelope-associated proteins in primary biliary cirrhosis. Hepatology 1988; 8: 930–8PubMedCrossRefGoogle Scholar
  55. 55.
    Lassoued K, Guilly M-N, Andre C, et al. Autoantibodies to a 200 kD polypeptide(s) of the nuclear envelope: a new serologic marker of primary biliary cirrhosis. Clin Exp Immunol 1988; 74: 283–8PubMedGoogle Scholar
  56. 56.
    Courvalin J-C, Lassoued K, Bartnik E, et al. The 210 kilodalton nuclear envelope polypeptide recognized by human autoantibodies in primary biliary cirrhosis is the major glycoprotein of the nuclear pore. J Clin Invest 1990; 86: 279–85PubMedCrossRefGoogle Scholar
  57. 57.
    Nickowitz RE, Worman HJ. Autoantibodies from patients with primary biliary cirrhosis recognize a restricted region within the cytoplasmic of nuclear pore membrane glycoprotein Gp210. J Exp Med 1993; 178: 2237–42PubMedCrossRefGoogle Scholar
  58. 58.
    Nickowitz RE, Wozniak RW, Schaffner F, et al. Autoantibodies against integral membrane proteins of the nuclear envelope in patients with primary biliary cirrhosis. Gastroenterology 1994; 106: 193–9PubMedGoogle Scholar
  59. 59.
    Worman HJ, Yuan J, Blobel G, et al. A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci USA 1988; 85: 8531–4PubMedCrossRefGoogle Scholar
  60. 60.
    Worman HJ, Evans CD, Blobel G. The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J Cell Biol 1990; 111: 1535–42PubMedCrossRefGoogle Scholar
  61. 61.
    Ye Q, Worman HJ. Primary structure analysis and lamin B and DNA binding of human LBR, an integral protein of the nuclear envelope inner membrane. J Biol Chem 1994; 269: 11306–11PubMedGoogle Scholar
  62. 62.
    Courvalin J-C, Lassoued K, Worman HJ, et al. Identification and characterization of autoantibodies against the nuclear envelope lamin B receptor from patients with primary biliary cirrhosis. J Exp Med 1990; 172: 961–7PubMedCrossRefGoogle Scholar
  63. 63.
    Powell F, Schoreter AL, Dickson ER. Antinuclear antibodies in primary biliary cirrhosis. Lancet 1984; I: 288–9CrossRefGoogle Scholar
  64. 64.
    Prost AC, Abuaf N, Rouquette-Gally AM, et al. Comparing HEp-2 cell line with rat liver in routine screening test for anti-nuclear and anti-nucleolar autoantibodies in autoimmune diseases. Ann Biol Clin (Paris) 1987; 45: 610–7Google Scholar
  65. 65.
    Fritzler MJ, Valencia DW, McCarty GA. Speckled pattern anti-nuclear antibodies resembling anticentromere antibodies. Arthritis Rheum 1984; 27: 92–6PubMedCrossRefGoogle Scholar
  66. 66.
    Ascoli CA, Maul GG. Identification of a novel nuclear domain. J Cell Biol 1991; 112: 785–95PubMedCrossRefGoogle Scholar
  67. 67.
    Evans J, Reuben A, Craft C. PBC 95k, a 95 kilodalton nuclear autoantigen in primary biliary cirrhosis. Arthritis Rheum 1991; 34: 731–6PubMedCrossRefGoogle Scholar
  68. 68.
    Bernstein RM, Neuberger JM, Bunn CC, et al. Diversity of autoantibodies in primary biliary cirrhosis and chronic active hepatitis. Clin Exp Immunol 1984; 55: 553–60PubMedGoogle Scholar
  69. 69.
    Cassani F, Bianchi FB, Lenzi M, et al. Immunomorphological characterization of anti-nuclear antibodies in chronic liver disease. J Clin Pathol 1985; 38: 801–5PubMedCrossRefGoogle Scholar
  70. 70.
    McMillan SA, Alderdice JM, McKee LM, et al. Diversity of autoantibodies in patients with anti-mitochondrial antibodies and their diagnostic value. J Clin Pathol 1987; 40: 232–6PubMedCrossRefGoogle Scholar
  71. 71.
    Fusconi M, Lassani F, Govoni M, et al. Anti-nuclear antibodies of primary biliary cirrhosis recognize 78–92 kD and 96–100 kD proteins of nuclear bodies. Clin Exp Immunol 1991; 83: 291–7PubMedCrossRefGoogle Scholar
  72. 72.
    Szostecki C, Guldner HH, Netter HJ, et al. Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 1990; 145: 4338–47PubMedGoogle Scholar
  73. 73.
    Guldner HH, Szostecki C, Grotzinger T, et al. IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis. J Immunol 1992; 149: 4067–73PubMedGoogle Scholar
  74. 74.
    Szostecki C, Will H, Netter HJ, et al. Autoantibodies to the nuclear Sp100 protein in primary biliary cirrhosis and associated diseases: epitope specificity and immunoglobulin class description. Scand J Immunol 1992; 36: 555–64PubMedCrossRefGoogle Scholar
  75. 75.
    Elta GH, Sepersky RA, Goldberg MJ, et al. Increased incidence of hypothyroidism in primary biliary cirrhosis. Dig Dis Sci 1983; 28: 971–5PubMedCrossRefGoogle Scholar
  76. 76.
    Lefvert AK, Holm G. Characterization of acetylcholine receptor antibodies in a patient with primary biliary cirrhosis. Acta Neurol Scand 1989; 80: 255–8PubMedCrossRefGoogle Scholar
  77. 77.
    Broome U, Scheynius A, Hultcrantz R. Induced expression of heat-shock protein on biliary epithelium in patients with primary sclerosing cholangitis and primary biliary cirrhosis. Hepatology 1993; 18: 298–303PubMedGoogle Scholar
  78. 78.
    Suou T, Ago H, Sawada H, et al. Cellular sensitivity to native type IV collagen in primary biliary cirrhosis. Res Commun Chem Pathol Pharmacol 1993; 79: 275–91PubMedGoogle Scholar
  79. 79.
    Roberts-Thomson PJ, Shepherd K. Low molecular weight IgM in primary biliary cirrhosis. Gut 1990; 31: 88–91PubMedCrossRefGoogle Scholar
  80. 80.
    Fakunle YM, Avanguibel F, de Villiers. et al. Monomeric (7S) IgM in chronic liver disease. Clin Exp Immunol 1979; 38: 204–10PubMedGoogle Scholar
  81. 81.
    Lindgren S, Eriksson S. IgM in primary biliary cirrhosis. Physicochemical and complement activating properties. J Lab Clin Med 1982; 99: 636–45PubMedGoogle Scholar
  82. 82.
    James SP, Jones EA, Hoofnagle JH, et al. Circulating activated B cells in primary biliary cirrhosis. J Clin Immunol 1985; 5: 254–60PubMedCrossRefGoogle Scholar
  83. 83.
    Nouri-Aria KT, Hegarty JE, Neuberger J, et al. In vitro studies on the mechanism of increased serum IgM levels in primary biliary cirrhosis. Clin Exp Immunol 1985; 61: 297–304PubMedGoogle Scholar
  84. 84.
    Minuk GY, Boyd ND, Matheson DS, et al. Serum immunoglobulin E levels in patients with primary biliary cirrhosis. J Allergy Clin Immunol 1989; 83: 462–6PubMedCrossRefGoogle Scholar
  85. 85.
    Jones EA, Frank MM, Jaffe CJ, et al. Primary biliary cirrhosis and the complement system. Ann Int Med 1979; 90: 72–84Google Scholar
  86. 86.
    Lindgren S, Laurell A-B, Eriksson S. Complement components and activation in primary biliary cirrhosis. Hepatology 1984; 4: 9–14PubMedCrossRefGoogle Scholar
  87. 87.
    Meuer SC, Moebius U, Manns M, et al. Clonal analysis of human T lymphocytes infiltrating the liver in chronic active hepatitis Band primary biliary cirrhosis. EurJ Immunol 1988; 18: 1447–52CrossRefGoogle Scholar
  88. 88.
    Hoffmann RM, Pape GR, Spengler U, et al. Clonal analysis of liver-derived T cells of patients with primary biliary cirrhosis. Clin Exp Immunol 1989; 76: 210–5PubMedGoogle Scholar
  89. 89.
    Krams S, Van de Water J, et al. Analysis of hepatic T lymphocyte and immunoglobulin deposits in patients with primary biliary cirrhosis. Hepatology 1990; 12: 306–13PubMedCrossRefGoogle Scholar
  90. 90.
    Lohr H, Fleischer B, Gerken G, et al. Autoreactive liver-infiltrating T cells in primary biliary cirrhosis recognize inner mitochondrial epitopes and the pyruvate dehydrogenase complex. J Hepatol 1993; 18: 322–7PubMedCrossRefGoogle Scholar
  91. 91.
    Zetterman RK, Woltjen JA. Suppressor cell activity in primary biliary cirrhosis. Dig Dis Sci 1980; 25: 104–7PubMedCrossRefGoogle Scholar
  92. 92.
    James SP, Elson CO, Jones EA, et al. Abnormal regulation of immunoglobulin synthesis in vitro in primary biliary cirrhosis. Gastroenterology 1980; 79: 242–54PubMedGoogle Scholar
  93. 93.
    James SP, Elson CO, Waggoner JG, et al. Deficiency of the autologous mixed lymphocyte reaction in patients with primary biliary cirrhosis. J Clin Invest 1980; 66: 1305–10PubMedCrossRefGoogle Scholar
  94. 94.
    Bhan AK, Dienstag JL, Wands JR, et al. Alterations of T-cell subsets in primary biliary cirrhosis. Clin Exp Immunol 1982; 47: 351–8PubMedGoogle Scholar
  95. 95.
    Miller KB, Elta GH, Rudders RA, et al. Lymphocyte subsets in primary biliary cirrhosis. Ann Intern Med 1984; 100: 385–7PubMedGoogle Scholar
  96. 96.
    Nakanuma Y. Distribution of B-lymphocytes in nonsuppurative cholangitis in primary biliary cirrhosis. Hepatology 1993; 18: 570–5PubMedCrossRefGoogle Scholar
  97. 97.
    Avigan MI, Adamson G, Hoofnagle JH, et al. The in vitro production of antibodies to mitochondrial antigens by peripheral blood mononuclear cells from patients with primary biliary cirrhosis. Hepatology 1986; 6: 999–1004PubMedCrossRefGoogle Scholar
  98. 98.
    Lohse AW, Reckmann A, Kyiatsoulis A, et al. In vitro secretion of specific antimitochondrial antibodies in primary biliary cirrhosis. J Hepatol 1992; 16: 165–70PubMedCrossRefGoogle Scholar
  99. 99.
    Thomas HC, De Villiers D, Potter BJ, et al. Immune complexes in acute and chronic liver disease. Clin Exp Immunol 1978; 31: 150–7PubMedGoogle Scholar
  100. 100.
    Potter BJ, Elias E, Jones EA. Hypercatabolism of the third component of complement in patients with primary biliary cirrhosis. J Lab Clin Med 1976; 88: 427–32PubMedGoogle Scholar
  101. 101.
    Amoroso P, Vergani D, Wojcicka BM, et al. Identification of biliary antigens in circulating immune complexes in primary biliary cirrhosis. Clin Exp Immunol 1980; 42: 95–8PubMedGoogle Scholar
  102. 102.
    Penner E, Goldenberg H, Albini B, et al. Immune complexes in primary biliary cirrhosis contain mitochondrial antigens. Clin Immunol Immunopathol 1982; 22: 394–9PubMedCrossRefGoogle Scholar
  103. 103.
    Ballardini G, Miriakian R, Pisi E, et al. Aberrant expression of HLA DR antigens on bile duct epithelium in primary biliary cirrhosis: relevance to pathogenesis. Lancet 1984; II: 1009–13CrossRefGoogle Scholar
  104. 104.
    Nakanuma Y, Kono K. Expression of HLA-DR antigens on interlobular bile ducts in primary biliary cirrhosis and other hepatobiliary diseases: an immunohistochemical study. Hum Pathol 1991; 22: 431–6PubMedCrossRefGoogle Scholar
  105. 105.
    Calmus Y, Arvieux C, Gane P, et al. Cholestasis induces major histocompatibility complex class I expression in hepatocytes. Gastroenterology 1992; 102: 1371–7PubMedGoogle Scholar
  106. 106.
    Spengler U, Pape GR, Hoffmann RM, et al. Differential expression of MHC class II subregion products on bile duct epithelial cells and hepatocytes in patients with primary biliary cirrhosis. Hepatology 1988; 8: 459–62PubMedCrossRefGoogle Scholar
  107. 107.
    Himeno H, Saibara T, Onishi S, et al. Administration of interleukin-2 induced major histocompatibility complex class II expression on the biliary epithelial cells, possibly through endogenous interferon-gamma production. Hepatology 1992; 16: 409–17PubMedCrossRefGoogle Scholar
  108. 108.
    Combes B. Prednisolone for primary biliary cirrhosis — good news, bad news [editorial]. Hepatology 1989; 10: 511–3PubMedCrossRefGoogle Scholar
  109. 109.
    Matloff DS, Alpert E, Resnick RH, et al. A prospective trial of D-penicillamine in primary biliary cirrhosis. N Engl J Med 1982; 306: 319PubMedCrossRefGoogle Scholar
  110. 110.
    James OF. D-penicillamine for primary biliary cirrhosis. Gut 1985; 26: 109–13PubMedCrossRefGoogle Scholar
  111. 111.
    Dickson ER, Fleming TR, Wiesner RH, et al. Trial of penicillamine in advanced primary biliary cirrhosis. N Engl J Med 1985; 312: 1011–5PubMedCrossRefGoogle Scholar
  112. 112.
    Epstein O, Jain S, Lee R, et al. D-penicillamine treatment improves survival in primary biliary cirrhosis. Lancet 1981; II: 1275–7CrossRefGoogle Scholar
  113. 113.
    Neuberger J, Christiansen E, Portmann B, et al. Double blind controlled trial of D-penicillamine in patients with primary biliary cirrhosis. Gut 1985; 26: 114–9PubMedCrossRefGoogle Scholar
  114. 114.
    Bodenheimer HC, Schaffner F, Sternlieb I, et al. A prospective trial of D-penicillamine in the treatment of primary biliary cirrhosis. Hepatology 1985; 5: 1139–42PubMedCrossRefGoogle Scholar
  115. 115.
    Kaplan M. Medical treatment of primary biliary cirrhosis. Semin Liver Dis 1989; 9: 138–43PubMedCrossRefGoogle Scholar
  116. 116.
    Heathcote J, Ross A, Sherlock S. A prospective controlled trial of azathioprine in primary biliary cirrhosis. Gastroenterology 1976; 70: 656–60PubMedGoogle Scholar
  117. 117.
    Christensen E, Neuberger J, Crowe J, et al. Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Gastroenterology 1985; 89: 1084–91PubMedGoogle Scholar
  118. 118.
    Hoofnagle JH, Davis GL, Schafer DF, et al. Randomized trial of chlorambucil for primary biliary cirrhosis. Gastroenterology 1986; 91: 1327–34PubMedGoogle Scholar
  119. 119.
    Jones EA, Bergasa NV. The pruritus of cholestasis: from bile acids to opiate antagonists. Hepatology 1990; 11: 884–7PubMedCrossRefGoogle Scholar
  120. 120.
    Rosen H. Primary biliary cirrhosis and bone disease [editorial]. Hepatology 1995; 21: 253–5PubMedCrossRefGoogle Scholar
  121. 121.
    Hoofnagle JH, Carithers Jr RL, Shapiro C, et al. Fulminant hepatic failure: summary of a workshop. Hepatology 1995; 21: 240–52PubMedGoogle Scholar
  122. 122.
    Poupon RE, Balkau B, Eschwege E, et al. A multicenter controlled trial of ursodiol for the treatment of primary biliary cirrhosis. N Engl J Med 1991; 324: 1548–54PubMedCrossRefGoogle Scholar
  123. 123.
    Hadziyannis S, Hadziyannis E, Makris A. A randomized controlled trial of ursodeoxycholic acid for primary biliary cirrhosis [abstract]. Hepatology 1989; 10: 580Google Scholar
  124. 124.
    Leuschner U, Fischer H, Kurtz W, et al. Ursodeoxycholic acid in primary biliary cirrhosis: results of a controlled double-blind trial. Gastroenterology 1989; 97: 1268–74PubMedGoogle Scholar
  125. 125.
    Combes B, Carithers RL, McDonald MF, et al. Ursodeoxycholic acid therapy in patients with primary biliary cirrhosis [abstract]. Hepatology 1991; 14: 91ACrossRefGoogle Scholar
  126. 126.
    Heathcote EJ, Cauch-Dudek K, Walker V, et al. The Canadian multicenter double-blind randomized trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 1994; 19: 1149–56PubMedCrossRefGoogle Scholar
  127. 127.
    Battezzati PM, Podda M, Bianchi FB, et al. Ursodeoxycholic acid for symptomatic primary biliary cirrhosis. J Hepatol 1993; 17: 332–8PubMedCrossRefGoogle Scholar
  128. 128.
    Lindor KD, Dickson ER, Baldus WP, et al. Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology 1994; 106: 1284–90PubMedGoogle Scholar
  129. 129.
    Poupon RE, Poupon R, Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. N Engl J Med 1994; 330: 1342–7PubMedCrossRefGoogle Scholar
  130. 130.
    Batta AK, Salen G, Mirchandani R, et al. Effect of long-term treatment with ursodiol on clinical and biochemical features and biliary bile acid metabolism in patients with primary biliary cirrhosis. Am J Gastroenterol 1993; 88: 691–700PubMedGoogle Scholar
  131. 131.
    Attili AF, Angelico M, Cantafora A, et al. Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med Hypotheses 1986; 19: 57–69PubMedCrossRefGoogle Scholar
  132. 132.
    Armstrong MJ, Carey MC. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase hplc mobilities and micellar cholesterol-solubilizing capacities. J Lipid Res 1982; 23: 70–80PubMedGoogle Scholar
  133. 133.
    Scholmerich J, Becher MS, Schmidt K, et al. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties: studies of isolated hepatocytes and lipid membrane vesicles. Hepatology 1984; 4: 661–6PubMedCrossRefGoogle Scholar
  134. 134.
    Hofmann A. Bile acid hepatotoxicity and the rationale of UDCA therapy in chronic cholestatic liver disease: some hypotheses. In: Paumgartner G, Stiehl A, Barbara L, et al., editors. Strategies for the treatment of hepatobiliary diseases. Dordrecht: Kluwer Academic Publishers, 1989: 13–33Google Scholar
  135. 135.
    Crosignani A, Podda M, Battezatti PM, et al. Changes in bile acid composition in patients with primary biliary cirrhosis induced by ursodeoxycholic acid administration. Hepatology 1991; 14: 1000–7PubMedCrossRefGoogle Scholar
  136. 136.
    Poupon RE, Chretien Y, Poupon R, et al. Serum bile acids in primary biliary cirrhosis: effect of ursodeoxycholic acid therapy. Hepatology 1993; 17: 599–604PubMedCrossRefGoogle Scholar
  137. 137.
    Stiehl A, Raedsch R, Rudolph G. Acute effects of ursodeoxycholic acid and chenodeoxycholic acid on the small intestinal absorption of bile acids. Gastroenterology 1990; 98: 424–8PubMedGoogle Scholar
  138. 138.
    Cirillo NW, Zwas FR. Ursodeoxycholic acid in the treatment of chronic liver disease. Am J Gastroenterol 1994; 89: 1447–52PubMedGoogle Scholar
  139. 139.
    Batta AK, Arora R, Salen G, et al. Characterization of serum and urinary bile acids in patients with primary biliary cirrhosis by gas-liquid chromatography-mass spectrometry: effect of ursodeoxycholic acid treatment. J Lipid Res 1989; 30: 1953–62PubMedGoogle Scholar
  140. 140.
    Galle P, Theilmann L, Raedsch R, et al. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology 1990; 12: 486–91PubMedCrossRefGoogle Scholar
  141. 141.
    Miyazaki K, Nakayama F, Koga A. Effect of chenodeoxycholic and ursodeoxycholic acid on isolated adult human hepatocytes. Dig Dis Sci 1984; 12: 1123–30CrossRefGoogle Scholar
  142. 142.
    Heuman DM, Pandak WM, Hylemon PB, et al. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: in vitro studies in rat hepatocytes and human erythrocytes. Hepatology 1991; 14: 920–6PubMedCrossRefGoogle Scholar
  143. 143.
    Guldutuna S, Zimmer G, Imhof M, et al. Molecular aspects of membrane stabilization by ursodeoxycholate. Gastroenterology 1993; 104: 1736–44PubMedGoogle Scholar
  144. 144.
    Erlinger S. Hypercholeretic bile acids: a clue to the mechanism. Hepatology 1990; 11: 888–90PubMedCrossRefGoogle Scholar
  145. 145.
    Yoon YB, Hagey LR, Hofmann AF, et al. Effect of side chain shortening on the physiologic properties of bile acids: hepatic transport and effect of biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 1986; 90: 837–52PubMedGoogle Scholar
  146. 146.
    Nakai T, Katagiri K, Hoshino M, et al. Microtubule-independent choleresis and anti-cholestatic action of tauroursodeoxycholate in colchicine-treated rat liver. Biochem J 1992; 288: 613–7PubMedGoogle Scholar
  147. 147.
    Jazrawi RP, De Caestecker JS, Goggin AC, et al. Kinetics of hepatic bile acid handling in cholestatic liver disease: effect of ursodeoxycholic acid. Gastroenterology 1994; 106: 134–42PubMedGoogle Scholar
  148. 148.
    Calmus Y, Gane P, Rouger P, et al. Hepatic expression of class I and class II major histocompatibility complex molecules in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepatology 1990; 11: 12–5PubMedCrossRefGoogle Scholar
  149. 149.
    Terasaki S, Nakanuma Y, Ogino H, et al. Hepatocellular and biliary expression of HLA antigens in primary biliary cirrhosis before and after ursodeoxycholic acid therapy. Am J Gastroenterol 1991; 86: 1194–9PubMedGoogle Scholar
  150. 150.
    Lacaille F, Paradis K. The immunosuppressive effect of ursodeoxycholic acid: a comparative in vitro study on human peripheral blood mononuclear cells. Hepatology 1993; 18: 165–72PubMedGoogle Scholar
  151. 151.
    Yoshikawa M, Tsujii T, Matsumura K, et al. Immunomodulatory effects of ursodeoxycholatic acid on immune responses. Hepatology 1992; 16: 358–64PubMedCrossRefGoogle Scholar
  152. 152.
    Kurktschiev D, Subat S, Adler D, et al. Immunomodulating effect of ursodeoxycholic acid in patients with primary biliary cirrhosis. J Hepatol 1993; 18: 373–7PubMedCrossRefGoogle Scholar
  153. 153.
    Jorgensen RA, Dickson ER, Hofmann J, et al. Characterisation of patients with a complete biochemical response to ursodeoxycholic acid. Gut 1995; 36: 935–8PubMedCrossRefGoogle Scholar
  154. 154.
    Simko V, Michael S, Prego V. Ursodeoxycholic therapy in chronic liver disease: a meta-analysis in primary biliary cirrhosis and in chronic hepatitis. Am J Gastroenterol 1994; 89: 392–8PubMedGoogle Scholar
  155. 155.
    Wiesner RH, Ludwig J, Lindor KD, et al. A controlled trial of cyclosporine in the treatment of primary biliary cirrhosis. N Engl J Med 1990; 322: 1419–24PubMedCrossRefGoogle Scholar
  156. 156.
    Karlsson-Parra A, Totterman TH, Nyberg A, et al. Immunological effects of cyclosporine in primary biliary cirrhosis: suppression of activated T cells and autoantibody levels. Int Arch Allergy Appl Immunol 1987; 83: 256–64PubMedCrossRefGoogle Scholar
  157. 157.
    Routhier G, Epstein O, Janossy G, et al. Effects of cyclosporine A on suppressor and inducer T lymphocytes in primary biliary cirrhosis. Lancet 1981; II: 1223–6Google Scholar
  158. 158.
    Beukers R, Schalm S. Effect of cyclosporine plus prednisone in primary biliary cirrhosis. Transplant Proc 1988; 20: 340PubMedGoogle Scholar
  159. 159.
    Minuk G, Bohme CE, Burgess E, et al. Pilot study of cyclosporine A in patients with symptomatic primary biliary cirrhosis. Gastroenterology 1988; 95: 1356–63PubMedGoogle Scholar
  160. 160.
    Lombard M, Portmann B, Neuberger J, et al. Cyclosporin A treatment in primary biliary cirrhosis: results of a long-term placebo controlled trial. Gastroenterology 1993; 104: 519–26PubMedGoogle Scholar
  161. 161.
    Kahan BD. Cyclosporine. N Engl J Med 1989; 321: 1725–38PubMedCrossRefGoogle Scholar
  162. 162.
    Harris DT, Kozumbo WJ, Cerutti PA, et al. Mechanism of cyclosporine A induced immunosuppression. Cell Immunol 1987; 109: 104–14PubMedCrossRefGoogle Scholar
  163. 163.
    Kaplan MM, Arora S, Pincus S. Primary sclerosing cholangitis and low-dose pulse methotrexate therapy. Ann Intern Med 1987; 106: 231PubMedGoogle Scholar
  164. 164.
    Kaplan MM. Methotrexate after five years in primary biliary cirrhosis [abstract]. Gastroenterology 1992; 102: A829Google Scholar
  165. 165.
    Kaplan M, Knox TA. Treatment of primary biliary cirrhosis with low-dose weekly methotrexate. Gastroenterology 1991; 101: 1332PubMedGoogle Scholar
  166. 166.
    Bergasa NV, Hoofnagle JH, Axiotis C, et al. Oral methotrexate for primary biliary cirrhosis: preliminary report [abstract]. Gastroenterology 1991; 100: A720Google Scholar
  167. 167.
    Weber P, Scheurlen M, Wiedmann K. Methotrexate ameliorates disease in patients with early primary biliary cirrhosis [abstract]. Gastroenterology 1991; 100: A810Google Scholar
  168. 168.
    Sharma A, Provenzale D, McKusick A, et al. Interstitial pneumonitis after low-dose methotrexate therapy in primary biliary cirrhosis. Gastroenterology 1994; 107: 266–70PubMedGoogle Scholar
  169. 169.
    Kaplan MM, Knox TA. Methotrexate for biliary cirrhosis [letter]. Gastroenterology 1992; 102: 1824PubMedGoogle Scholar
  170. 170.
    Mitchison HC, Bassendine MF, Malcolm AJ, et al. A pilot, double-blind, controlled 1-year trial of prednisolone treatment in primary biliary cirrhosis: hepatic improvement but greater bone loss. Hepatology 1989; 10: 420–9PubMedCrossRefGoogle Scholar
  171. 171.
    Rojkind M, Kersenobich D. Effect of colchicine on collagen, albumin, and transferrin synthesis by cirrhotic rat liver slices. Biochim Biophys Acta 1975; 348: 415–23Google Scholar
  172. 172.
    Tanner MS, Jackson D, Mowat AP. Hepatic collagen synthesis in a rat model of cirrhosis, and its modification by colchicine. J Pathol 1981; 135: 179–87PubMedCrossRefGoogle Scholar
  173. 173.
    Lohmander S, Moskalewski S, Madsen K, et al. Influence of colchicine on the synthesis and secretion of proteoglycans and collagen by fetal guinea pig chondrocytes. Exp Cell Res 1976; 99: 333–45PubMedCrossRefGoogle Scholar
  174. 174.
    Harris ED, Krane SM. The effects of colchicine on collagenase in cultures of rheumatoid synovium. Arthritis Rheum 1971; 14: 669–84PubMedCrossRefGoogle Scholar
  175. 175.
    Kersenobich D, Rojkind M, Quiroga A, et al. Effect of colchicine on lymphocyte and monocyte function and its relation to fibroblast proliferation in primary biliary cirrhosis. Hepatology 1990; 11: 205CrossRefGoogle Scholar
  176. 176.
    Miller LC, Kaplan MM. Serum interleukin-2 and tumor necrosis factor-ä in primary biliary cirrhosis: decrease by colchicine and relationship to HLA-DR4. Am J Gastroenterol 1992; 87: 465–70PubMedGoogle Scholar
  177. 177.
    Kirsenobich D, Uribe M, Suarez GI, et al. Treatment of cirrhosis with colchicine: a double-blind randomized trial. Gastroenterology 1979; 77: 532–6Google Scholar
  178. 178.
    Koldinger R. Treatment of primary biliary cirrhosis with colchicine [abstract]. Gastroenterology 1980; 78: 1309Google Scholar
  179. 179.
    Kaplan MM, Ailing DW, Zimmerman HJ, et al. A prospective trial of colchicine for primary biliary cirrhosis. N Engl J Med 1986; 315: 1448–54PubMedCrossRefGoogle Scholar
  180. 180.
    Warnes TW, Smith A, Lee FI, et al. A controlled trial of colchicine in primary biliary cirrhosis: trial design and preliminary report. J Hepatol 1987; 5: 1–7PubMedCrossRefGoogle Scholar
  181. 181.
    Bodenheimer Jr H, Schaffner F, Pezzullo J. Evaluation of colchicine therapy in primary biliary cirrhosis. Gastroenterology 1988; 95: 124–9PubMedGoogle Scholar
  182. 182.
    Zifroni A, Schaffner F. Long-term follow-up of patients with primary biliary cirrhosis on colchicine therapy. Hepatology 1991; 14: 990–3PubMedCrossRefGoogle Scholar
  183. 183.
    Vuoristo M, Farkkila M, Karnoven A-L, et al. A placebo-controlled trial of primary biliary cirrhosis treatment with colchicine and ursodeoxycholic acid. Gastroenterology 1995; 108: 1470–8PubMedCrossRefGoogle Scholar
  184. 184.
    Tzakis AG, Carcassonne C, Todo S, et al. Liver transplantation. Semin Liver Dis 1989; 9: 144–8PubMedCrossRefGoogle Scholar
  185. 185.
    Markus BH, Dickson ER, Grambsch PM, et al. Efficacy of liver transplantation in patients with primary biliary cirrhosis. N Engl J Med 1989; 320: 1709–13PubMedCrossRefGoogle Scholar
  186. 186.
    Neuberger J, Portmann B, MacDougall BR, et al. Recurrence of primary biliary cirrhosis after liver transplantation. N Engl J Med 1982; 306: 1–4PubMedCrossRefGoogle Scholar
  187. 187.
    Gouw ASH, Haagsma EB, Manns M, et al. Recurrence of primary biliary cirrhosis after liver transplantation [abstract]. Gastroenterology 1992; 102: A814Google Scholar
  188. 188.
    Demetris AJ, Markus BH, Esquivel C, et al. Pathologic analysis of liver transplantation for primary biliary cirrhosis. Hepatology 1988; 8: 939–47PubMedCrossRefGoogle Scholar
  189. 189.
    Haagsma EB, Manns M, Klein R, et al. Studies of antimitochondrial antibodies in primary biliary cirrhosis before and after orthotopic liver transplantation. Hepatology 1987; 7: 129–33PubMedCrossRefGoogle Scholar
  190. 190.
    Mackay l, Gershwin M. Primary biliary cirrhosis: current knowledge, perspectives, and future directions. Semin Liver Dis 1989; 9: 149–57PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Leslie Lilly
    • 1
  • Carl L. Berg
    • 1
  • John L. Gollan
    • 1
  1. 1.Harvard Medical School and Harvard Digestive Diseases CenterGastroenterology DivisionBostonUSA
  2. 2.Gastroenterology DivisionBrigham and Women’s HospitalBostonUSA

Personalised recommendations