Drug Investigation

, Volume 4, Supplement 4, pp 54–63

Cyclosporin A-Induced Cholestasis in the Rat

Beneficial Effects of S-Adenosyl-L-Methionine
  • E. Fernández
  • M. E. Muñoz
  • I. D. Román
  • A. I. Galán
  • J. M. González-Buitrago
  • R. Jiménez
Article

Summary

Cyclosporin A, a powerful immunosuppressor drug, induces nephrotoxicity and hepatotoxicity. The purpose of this study was to evaluate the ability of S-adenosyl-L-methionine (SAMe) to antagonise the cyclosporin A-induced hepatotoxicity in rats treated with cyclosporin A plus SAMe. Cyclosporin A treatment for 1 or 2 weeks increases plasma bilirubin, alters some plasma biochemical indicators of hepatic and renal function, causes cholestasis and reduces the biliary concentration and secretion of bile acid and other bile components. SAMe pretreatment and simultaneous treatment with SAMe plus cyclosporin A suppresses bilirubin increases in plasma, attenuates cholestasis and totally antagonises the adverse effects of cyclosporin A on bile acid secretion. Although cyclosporin A-induced hepatotoxicity in the rat is a multifactorial phenomenon, we suggest that the hepatoprotective effects of SAMe against cyclosporin A could be related to its regulatory function of membrane lipid composition and fluidity, either alone or combined with stimulation of the hepatic synthesis of thiol compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almasio P, Bortolini M, Pagliaro L, Coltorti M. Role of S-adenosyl-L-methionine in the treatment of intrahepatic cholestasis. Drugs 40 (Suppl. 3): 111–123, 1990PubMedCrossRefGoogle Scholar
  2. Arias IM. Mechanisms and consequences of ion transport in the liver. In Popper & Schaffner (Eds) Progress in liver diseases, pp. 145–159, Grune & Stratton, New York, 1986Google Scholar
  3. Ballatori N, Truong AT. Relation between biliary glutathione excretion and bile acid-independent bile flow. American Journal of Physiology 256: G22–G30, 1989PubMedGoogle Scholar
  4. Boelsterli UA, Rakhit G, Balazs T. Modulation by S-adenosyl-L-methionine of hepatic Na+,K+-ATPase, membrane fluidity, and bile flow in rat with ethinyl estradiol-induced cholestasis. He-patology 3: 12–17, 1983Google Scholar
  5. Bouis P, Brouillard JF, Fischer V, Donatsch P, Boelsterli UA. Effect of enzyme induction on Sandimmun® (cyclosporin A) biotransformation and hepatotoxicity in cultured rat hepatocytes and in vivo. Biochemical Pharmacology 39: 257–266, 1990PubMedCrossRefGoogle Scholar
  6. Cadranel JF, Dumont M, Mesa V, Degott C, Taillandier J, et al. Effect de l’administration chronique de ciclosporine A sur la cholérèse chez le rat. Gastroenterologie Clinique et Biologique 13: 779–782, 1989PubMedGoogle Scholar
  7. Cadranel JF, Dumont M, Mesa V, Degott C, Touchard D, et al. Effect of chronic administration of cyclosporin A on hepatic uptake and biliary secretion of bromosulfophthalein in rat. Digestive Diseases and Sciences 36: 221–224, 1991PubMedCrossRefGoogle Scholar
  8. Cava F, Gonzalez J, González-Buitrago JM, Muriel C, Jiménez R. Inhibition of biliary cholesterol and phospholipid secretion by cefmetazole: the role of vesicular transport and of canalicular events. Biochemical Journal 275: 591–595, 1991PubMedGoogle Scholar
  9. Chawla RK, Bonkovsky HL, Galambos JT. Biochemistry and pharmacology of S-adenosyl-L-methionine and rationales for its use in liver disease. Drugs 40 (Suppl. 3): 98–110, 1990PubMedCrossRefGoogle Scholar
  10. Coleman R. Biochemistry of bile secretion. Biochemical Journal 244: 249–261, 1987PubMedGoogle Scholar
  11. Di Padova C, Di Padova F, Tritapepe R, Stramentinoli G. S-Adenosyl-L-methionine protection against alfa-naphthyl-iso-thiocyanate-induced cholestasis in the rat. Toxicology Letters 29: 131–136, 1985PubMedCrossRefGoogle Scholar
  12. Duruibe VA, Okonmah A, Blyden GT. Effect of ciclosporin on rat liver and kidney glutathione content. Pharmacology 39: 205–212, 1989PubMedCrossRefGoogle Scholar
  13. Farthing JG, Clark ML. Nature of the toxicity of cyclosporin A in the rat. Biochemical Pharmacology 30: 3311–3316, 1981PubMedCrossRefGoogle Scholar
  14. Friedel HA, Goa KL, Benfield P. S-Adenosyl-L-methionine: a review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs 38: 389–416, 1989PubMedCrossRefGoogle Scholar
  15. Galán A, Román D, Cava F, Muñoz ME, Gonzalez J, Esteller A, Jiménez R. Cyclosporin A and hepatobiliary transport mechanisms. Abstract. Journal of Hepatology 11 (Suppl. 2): S23, 1990CrossRefGoogle Scholar
  16. Gálan AI, Zapata AJ, Román ID, Muñoz ME, Muriel C, et al. Impairment of maximal bilirubin secretion by cyclosporin A in the rat. Archives Internationales de Physiologic de Biochimie et de Biophysique 99: 373–376, 1991Google Scholar
  17. Hardison WGM, Wood GA. Importance of bicarbonate in bile salt independent fraction of bile flow. American Journal of Physiology 235: E158–E164, 1978PubMedGoogle Scholar
  18. Inselmann G, Hannemann J, Baumann K. Cyclosporine A induced lipid peroxidation and influence on glucose-6-phospha-tase in rat hepatic and renal microsomes. Research Communications in Chemical Pathology and Pharmacology 68: 189–203, 1990PubMedGoogle Scholar
  19. Jimenez R, Muñoz ME, Fernández E, Román ID, Galán AI. Evaluation and mechanisms of the lithogenic effects of cyclosporine A (CyA). Abstract. Journal of Hepatology 13 (Suppl. 2): S38, 1991Google Scholar
  20. Kahan BB. Cyclosporine. New England Journal of Medicine 321: 1725–1738, 1989PubMedCrossRefGoogle Scholar
  21. Kenny RP, Picoll DA, Mailer ES, Vanderslice RR, Drott H, et al. Confirmation and characterization of cyclosporine cholestasis. Abstract. Hepatology 6: 1185, 1986Google Scholar
  22. Kukonguiriyapan U, Stacey NH. Inhibition of taurocholate transport by cyclosporin A in cultured in rat hepatocytes. Journal of Pharmacology and Experimental Therapeutics 247: 685–689, 1988Google Scholar
  23. Lanzini A, Northfield TC. Biliary lipid secretion in man. European Journal of Clinical Investigation 21: 259–272, 1991PubMedCrossRefGoogle Scholar
  24. Le Thai B, Dumont M, Michel A, Erlinger S, Houssin D. Cyclo-sporine-induced cholestasis: inhibition of bile acid secretion is caused by the parental molecule. Transplantation Proceedings 29: 4149–4151, 1987Google Scholar
  25. Lorber MI, Van Buren CT, Flechner SM, Williams C, Kahan BD. Hepatobiliary and pancreatic complications of cyclosporine therapy in 466 renal transplant recipients. Transplantation 43: 35–40, 1987PubMedCrossRefGoogle Scholar
  26. Loria P, Bertolotti M, Tripodi A, Dilengite MA, Carulli N. Advances in the comprehension of the pathophysiology of bile secretion. Digestive Diseases 9: 142–155, 1991PubMedCrossRefGoogle Scholar
  27. Meier PJ. Transport polarity of hepatocytes. Seminars in Liver Disease 8: 293–307, 1988PubMedCrossRefGoogle Scholar
  28. Moseley RH, Johnson TR, Morrissette JM. Inhibition of bile acid transport by cyclosporine A in rat liver plasma membrane vesicles. Journal of Pharmacology and Experimental Therapeutics 253: 974–980, 1990PubMedGoogle Scholar
  29. Nagelkerke JF, Tijdens RB, Schwarz EP, Winters MFG, Paul LC, et al. The covalent binding of cyclosporin A to rat liver macromolecules in vivo and in vitro: the role of cytochrome P-450. Toxicology 47: 277–284, 1987PubMedCrossRefGoogle Scholar
  30. Nassuato G, Strazzabosco M, Muraca M, Passera D, Fragasso A, et al. Effect of cyclosporin A on hepatic bilirubin transport. Abstract. Journal of Hepatology 7 (Suppl. 1): S63, 1988CrossRefGoogle Scholar
  31. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology 14: 551–566, 1991PubMedCrossRefGoogle Scholar
  32. Oelberg DG, Lester R. Cellular mechanisms of cholestasis. Annual Review of Medicine 37: 297–317, 1986PubMedCrossRefGoogle Scholar
  33. Román ID, Monte MJ, Esteller A, Jiménez R. Cholestasis in the rat by intravenous administration of cyclosporine A vehicle, Cremophor EL. Transplantation 48: 554–558, 1989PubMedCrossRefGoogle Scholar
  34. Román ID, Monte MJ, González-Buitrago JM, Esteller A, Jimenez R. Inhibition of hepatocytary vesicular transport by cyclosporin A in the rat: relationship with cholestasis and hy-perbilirubinemia. Hepatology 12: 83–91, 1990PubMedCrossRefGoogle Scholar
  35. Rossaro L, Dowd SR, Simplaceanu Y, Ho C, Van Thiel DH, et al. Effect of FK 506 and cyclosporins on model membranes studied by nuclear magnetic resonance spectroscopy. Abstract of International Symposium on Drugs and The Liver, Milan, July 3–5, 1991Google Scholar
  36. Rotolo FS, Branum GD, Bowers BA, Meyers WC. Effect of cyclosporine on bile secretion in rats. American Journal of Surgery 151: 35–39, 1986PubMedCrossRefGoogle Scholar
  37. Simon FR, Sutherland E, Davis RA. Studies on the liver surface membrane in the pathogenesis of intrahepatic cholestasis. Possible role of alterations in (N+,K+) ATPase and lipid structure in estrogen-induced bile secretory failure. In Gentilini et al. (Eds) Problems in intrahepatic cholestasis, pp. 30–37, Karger, Basel, 1979Google Scholar
  38. Stone BG, Udani M, Sanghyi A, Warty V, Plocki K, et al. Cyclosporin A-induced cholestasis. The mechanism in a rat model. Gastroenterology 93: 344–351, 1987PubMedGoogle Scholar
  39. Stramentinoli G, Gualano M, Di Padova C. Effect of S-adenosyl-L-methionine on ethinylestradiol-induced impairment of bile flow in female rats. Experientia 33: 1361–1362, 1977PubMedCrossRefGoogle Scholar
  40. Strazzabosco M, Nassuato G, Iemmolo RM, Muraca M, Orlando R, et al. Prevention of phalloidin (Ph) induced cholestasis by S-adenosyl-L-methionine (SAMe) in rats. Abstract. Journal of Hepatology 2: S333, 1985Google Scholar
  41. Sutherland E, Dixon BS, Leffert HL, Skally H, Zaccaro L. Biochemical localization of hepatic surface-membrane Na+,K+-ATPase activity depends on membrane lipid fluidity. Proceedings of the National Academy of Sciences 85: 8673–8677, 1988CrossRefGoogle Scholar
  42. Thomas SE, Gordon DS. Cyclosporin. Southern Medical Journal 79: 205–213, 1986PubMedCrossRefGoogle Scholar
  43. Vendemiale G, Altomare E, Trizio T, Le Grazie C, Di Padova C, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scandinavian Journal of Gastroenterology 24: 407–415, 1989PubMedCrossRefGoogle Scholar
  44. Whitington PF, Dudeja P, Hecht JR, Whitington SH, Brasitus TA. Lipid alterations in the hepatocyte basolateral sinusoidal membrane (BLM) domain may explain cyclosporine (CsA) induced cholestasis in the rat. Abstract. Hepatology 8: 1363, 1988Google Scholar
  45. Wiesner RH, Ludwig J, Lindor KD, Jorgensen RA, Baldus WP, et al. A controlled trial of cyclosporine in the treatment of primary biliary cirrhosis. New England Journal of Medicine 20: 1419–1424, 1990CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1992

Authors and Affiliations

  • E. Fernández
    • 1
  • M. E. Muñoz
    • 1
  • I. D. Román
    • 1
  • A. I. Galán
    • 1
  • J. M. González-Buitrago
    • 2
  • R. Jiménez
    • 1
  1. 1.Department of Physiology and Pharmacology, Faculty of PharmacyUniversidad de SalamancaSalamancaSpain
  2. 2.Department of Biochemistry, Faculty of PharmacyUniversidad de SalamancaSalamancaSpain

Personalised recommendations