American Journal of Respiratory Medicine

, Volume 1, Issue 2, pp 119–131 | Cite as

Diffuse Panbronchiolitis

Role of Macrolides in Therapy
  • Naoto Keicho
  • Shoji Kudoh
Review Article


Diffuse panbronchiolitis (DPB) is characterized by chronic sinobronchial infection and diffuse bilateral micronodular pulmonary lesions consisting of inflammatory cells. Studies on disease etiology point to a genetic predisposition unique to Asians. Early therapy for DPB was largely symptomatic. The advent of macrolide antibiotics, including erythromycin, roxithromycin and clarithromycin, has strikingly changed disease prognosis.

Low-dose, long-term macrolide therapy for DPB originated from detailed observations of response to therapy in a single patient. The bactericidal activity of macrolides, particularly erythromycin, is not a significant factor for their clinical efficacy in DPB. Firstly, irrespective of bacterial clearance, clinical improvement is observed in patients treated with erythromycin. Secondly, even in cases with bacterial superinfection with Pseudomonas aeruginosa resistant to macrolides, treatment has proved effective. Thirdly, the recommended dosage of macrolides produces peak levels in tissue that are below the minimum inhibitory concentrations for major pathogenic bacteria that colonize the airway.

In the last two decades, the possible mechanism underlying the effectiveness of macrolide therapy has been extensively studied. The proposed mechanism of action includes inhibition of excessive mucus and water secretion from the airway epithelium, inhibition of neutrophil accumulation in the large airway, inhibition of lymphocyte and macrophage accumulation around the small airway, and modulation of bacterial virulence. The great success of macrolide therapy in diffuse panbronchiolitis may extend its application to the treatment of other chronic inflammatory disorders. If the anti-inflammatory activity of macrolides is independent of their bactericidal effect, new anti-inflammatory macrolides without antimicrobial activity should be developed to minimize emergence of macrolide-resistant micro-organisms.


Erythromycin Macrolides Human Leukocyte Antigen Class Roxithromycin Transporter Associate With Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Health Sciences Research Grants for Surveys and Research on Specific Diseases from the Ministry of Health Labour and Welfare of Japan and by the Organization for Pharmaceutical Safety and Research, in 2001.


  1. 1.
    Honma H. Diffuse panbronchiolitis [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1975 Jul; 13(7): 383–95PubMedGoogle Scholar
  2. 2.
    Yamanaka A, Saiki S, Tamura S, et al. Problems in chronic obstructive bronchial diseases, with special reference to diffuse panbronchiolitis [in Japanese]. Naika 1969 Mar; 23(3): 442–51PubMedGoogle Scholar
  3. 3.
    Izumi T, Doi O, Nobechi A, et al. Nation-wide survey of diffuse panbronchiolitis [in Japanese]. Annual Report on the study of interstitial lung disease in 1982. Tokyo: Ministry of Health and Welfare of Japan, 1983: 3–41Google Scholar
  4. 4.
    Homma H, Yamanaka A, Tanimoto S, et al. Diffuse panbronchiolitis. A disease of the transitional zone of the lung. Chest 1983 Jan; 83(1): 63–9PubMedGoogle Scholar
  5. 5.
    Kudoh S, Uetake T, Hagiwara K, et al. Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1987 Jun; 25(6): 632–42PubMedGoogle Scholar
  6. 6.
    Homma H. Diffuse panbronchiolitis. Jpn J Med 1986 Aug; 25(3): 329–34PubMedGoogle Scholar
  7. 7.
    Odaka M, Saito N, Hosoda Y, et al. An epidemiological study of DPB in a large company [in Japanese]. Annual report on the study of interstitial lung disease in 1980. Tokyo: Ministry of Health and Welfare of Japan 1981:25–8Google Scholar
  8. 8.
    Kim YW, Han SK, Shim YS, et al. The first report of diffuse panbronchiolitis in Korea: five case reports. Intern Med 1992 May; 31(5): 695–701PubMedGoogle Scholar
  9. 9.
    Chu YC, Yeh SZ, Chen CL, et al. Diffuse panbronchiolitis: report of a case. J Formos Med Assoc 1992 Sep; 91(9): 912–5PubMedGoogle Scholar
  10. 10.
    Tredaniel J, Cazals-Hatem D, Zalcman G, et al. Diffuse panbronchiolitis: efficacy of low-dose erythromycin. Respir Med 1994 Jul; 88(6): 479–80PubMedGoogle Scholar
  11. 11.
    Homer RJ, Khoo L, Smith GJ. Diffuse panbronchiolitis in a Hispanic man with travel history to Japan. Chest 1995 Apr; 107(4): 1176–8PubMedGoogle Scholar
  12. 12.
    Hu H, Liu Y, Cai Z, et al. A case of diffuse panbronchiolitis. Chin Med J (Engl) 1996 Dec; 109(12): 949–52Google Scholar
  13. 13.
    Zainudin BM, Roslina AM, Fadilah SA, et al. A report of the first three cases of diffuse panbronchiolitis in Malaysia. Med J Malaysia 1996 Mar; 51(1): 136–40PubMedGoogle Scholar
  14. 14.
    Wang H, Sun T, Miao J, et al. A definite case of diffuse panbronchiolitis diagnosed by open lung biopsy. Chin Med J (Engl) 1998 Sep; 111(9): 864Google Scholar
  15. 15.
    Tsang KW, Ooi CG, Ip MS, et al. Clinical profiles of Chinese patients with diffuse panbronchiolitis. Thorax 1998 Apr; 53(4): 274–80PubMedGoogle Scholar
  16. 16.
    Poh SC, Wang YT, Wang WY. Diffuse panbronchiolitis -a case report. Singapore Med J 2001 Jun; 42(6): 271–4PubMedGoogle Scholar
  17. 17.
    Randhawa P, Hoagland MH, Yousem SA. Diffuse panbronchiolitis in North America. Report of three cases and of the literature. Am J Surg Pathol 1991 Jan; 15(1): 43–7PubMedGoogle Scholar
  18. 18.
    Poletti V, Patelli M, Poletti G, et al. Diffuse panbronchiolitis observed in an Italian male. Sarcoidosis 1992 Mar; 9(1): 67–9PubMedGoogle Scholar
  19. 19.
    Fitzgerald JE, King Jr TE, Lynch DA, et al. Diffuse panbronchiolitis in the United States. Am J Respir Crit Care Med 1996 Aug; 154 (2 Pt 1): 497–503PubMedGoogle Scholar
  20. 20.
    Schulte W, Szrepka A, Bauer PC, et al. Diffuse panbronchiolitis. A rare differential diagnosis of chronic obstructive lung disease [in German]. Dtsch Med Wochenschr 1999 May 14; 124(19): 584–8PubMedGoogle Scholar
  21. 21.
    Chantarotorn S, Palwatwichai A, Vattanathum A, et al. Diffuse panbronchiolitis, the first case reports in Thailand. J Med Assoc Thai 1999 Aug; 82(8): 833–8PubMedGoogle Scholar
  22. 22.
    Gulhan M, Erturk A, Kurt B, et al. Diffuse panbronchiolitis observed in a white man in Turkey. Sarcoidosis Vasc Diffuse Lung Dis 2000 Oct; 17(3): 292–6PubMedGoogle Scholar
  23. 23.
    Claxton S, Markos J. A case of diffuse panbronchiolitis. Aust NZ J Med 2000 Feb; 30(1): 99–100Google Scholar
  24. 24.
    Martinez JA, Guimaraes SM, Ferreira RG, et al. Diffuse panbronchiolitis in Latin America. Am J Med Sci 2000 Mar; 319(3): 183–5PubMedGoogle Scholar
  25. 25.
    Fisher Jr MS, Rush WL, Rosado-de-Christenson ML, et al. Diffuse panbronchiolitis: histologic diagnosis in unsuspected cases involving North American residents of Asian descent. Arch Pathol Lab Med 1998 Feb; 122(2): 156–60PubMedGoogle Scholar
  26. 26.
    Brugiere O, Milleron B, Antoine M, et al. Diffuse panbronchiolitis in an Asian immigrant. Thorax 1996 Oct; 51(10): 1065–7PubMedGoogle Scholar
  27. 27.
    Corne J. Diffuse panbronchiolitis -a new Japanese export? Lancet 1996 Nov 30; 348(9040): 1465–6PubMedGoogle Scholar
  28. 28.
    Sugiyama Y, Kudoh S, Maeda H, et al. Analysis of HLA antigens in patients with diffuse panbronchiolitis. Am Rev Respir Dis 1990 Jun; 141(6): 1459–62PubMedGoogle Scholar
  29. 29.
    Keicho N, Tokunaga K, Nakata K, et al. Contribution of HLA genes to genetic predisposition in diffuse panbronchiolitis. Am J Respir Crit Care Med 1998 Sep; 158(3): 846–50PubMedGoogle Scholar
  30. 30.
    Park MH, Kim YW, Yoon HI, et al. Association of HLA class I antigens with diffuse panbronchiolitis in Korean patients. Am J Respir Crit Care Med 1999 Feb; 159(2): 526–9PubMedGoogle Scholar
  31. 31.
    Keicho N, Ohashi J, Tamiya G, et al. Fine localization of a major disease-susceptibility locus for diffuse panbronchiolitis. Am J Hum Genet 2000 Feb; 66(2): 501–7PubMedGoogle Scholar
  32. 32.
    Hoiby N. Diffuse panbronchiolitis and cystic fibrosis: East meets west. Thorax 1994 Jun; 49(6): 531–2PubMedGoogle Scholar
  33. 33.
    Sugiyama Y. Diffuse panbronchiolitis. Clin Chest Med 1993 Dec; 14(4): 765–72PubMedGoogle Scholar
  34. 34.
    Akai S, Okayama H, Shimura S, et al. Delta F508 mutation of cystic fibrosis gene is not found in chronic bronchitis with severe obstruction in Japan. Am Rev Respir Dis 1992 Sep; 146(3): 781–3PubMedGoogle Scholar
  35. 35.
    Ichikawa Y, Ninomiya H, Koga H, et al. Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients. Am Rev Respir Dis 1992 Jul; 146(1): 196–203PubMedGoogle Scholar
  36. 36.
    Kadota J, Sakito O, Kohno S, et al. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am Rev Respir Dis 1993 Jan; 147(1): 153–9PubMedGoogle Scholar
  37. 37.
    Yoshimura K, Iizuka S, Anzai C, et al. Diffuse panbronchiolitis is closely associated with mutations of the CFTR gene. Am J Respir Crit Care Med (Suppl) 2000; 161: A77Google Scholar
  38. 38.
    Sugiyama Y, Kudoh S, Kitamura S. A case of the bare lymphocyte syndrome with clinical manifestations of diffuse panbronchiolitis [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1989 Aug; 27(8): 980–3PubMedGoogle Scholar
  39. 39.
    Donate L, de la Salle H, Hanau D, et al. Association of HLA class I antigen deficiency related to a TAP2 gene mutation with familial bronchiectasis. J Pediatr 1995 Dec; 127(6): 895–900Google Scholar
  40. 40.
    Teisserenc H, Schmitt W, Blake N, et al. A case of primary immunodeficiency due to a defect of the major histocompatibility gene complex class I processing and presentation pathway. Immunol Lett 1997 Jun 1; 57(1-3): 183–7PubMedGoogle Scholar
  41. 41.
    Furukawa H, Murata S, Yabe T, et al. Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. J Clin Invest 1999 Mar; 103(5): 755–8PubMedGoogle Scholar
  42. 42.
    Raghavan M. Immunodeficiency due to defective antigen processing: the molecular basis for type 1 bare lymphocyte syndrome. J Clin Invest 1999 Mar; 103(5): 595–6PubMedGoogle Scholar
  43. 43.
    Azuma A, Keicho N, Furukawa H, et al. Prolonged survival of a bare lymphocyte syndrome type I patient with diffuse panbronchiolitis treated with erythromycin. Sarcoidosis Vasc Diffuse Lung Dis 2001 Oct; 18(3): 312–3PubMedGoogle Scholar
  44. 44.
    Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001 Jul; 11(7): 1156–66PubMedGoogle Scholar
  45. 45.
    Maeda M, Saiki S, Yamanaka A. Serial section analysis of the lesions in diffuse panbronchiolitis. Acta Pathol Jpn 1987 May; 37(5): 693–704PubMedGoogle Scholar
  46. 46.
    Iwata M, Colby TV, Kitaichi M. Diffuse panbronchiolitis: diagnosis and distinction from various pulmonary diseases with centrilobular interstitial foam cell accumulations. Hum Pathol 1994 Apr; 25(4): 357–63PubMedGoogle Scholar
  47. 47.
    Sato A, Chida K, Iwata M, et al. Study of bronchus-associated lymphoid tissue in patients with diffuse panbronchiolitis. Am Rev Respir Dis 1992 Aug; 146(2): 473–8PubMedGoogle Scholar
  48. 48.
    Todate A, Chida K, Suda T, et al. Increased numbers of dendritic cells in the bronchiolar tissues of diffuse panbronchiolitis. Am J Respir Crit Care Med 2000 Jul; 162(1): 148–53PubMedGoogle Scholar
  49. 49.
    Mukae H, Kadota J, Kohno S, et al. Increase in activated CD8+ cells in bronchoalveolar lavage fluid in patients with diffuse panbronchiolitis. Am J Respir Crit Care Med 1995 Aug; 152(2): 613–8PubMedGoogle Scholar
  50. 50.
    Kawakami K, Kadota J, Iida K, et al. Phenotypic characterization of T cells in bronchoalveolar lavage fluid (BALF) and peripheral blood of patients with diffuse panbronchiolitis; the importance of cytotoxic T cells. Clin Exp Immunol 1997 Feb; 107(2): 410–6PubMedGoogle Scholar
  51. 51.
    Kadota J, Mukae H, Tomono K, et al. High concentrations of beta-chemokines in BAL fluid of patients with diffuse panbronchiolitis. Chest 2001 Aug; 120(2): 602–7PubMedGoogle Scholar
  52. 52.
    Ichikawa Y, Koga H, Tanaka M, et al. Neutrophilia in bronchoalveolar lavage fluid of diffuse panbronchiolitis. Chest 1990 Oct; 98(4): 917–23PubMedGoogle Scholar
  53. 53.
    Oda H, Kadota J, Kohno S, et al. Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest 1994 Oct; 106(4): 1116–23PubMedGoogle Scholar
  54. 54.
    Oda H, Kadota J, Kohno S, et al. Leukotriene B4 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Chest 1995 Jul; 108(1): 116–22PubMedGoogle Scholar
  55. 55.
    Oishi K, Sonoda F, Kobayashi S, et al. Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases. Infect Immun 1994 Oct; 62(10): 4145–52PubMedGoogle Scholar
  56. 56.
    Sakito O, Kadota J, Kohno S, et al. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy. Respiration 1996; 63(1): 42–8PubMedGoogle Scholar
  57. 57.
    Kusano S, Kadota J, Kohno S, et al. Effect of roxithromycin on peripheral neutrophil adhesion molecules in patients with chronic lower respiratory tract disease. Respiration 1995; 62(4): 217–22PubMedGoogle Scholar
  58. 58.
    Mukae H, Kadota J, Ashitani J, et al. Elevated levels of soluble adhesion molecules in serum of patients with diffuse panbronchiolitis. Chest 1997 Dec; 112(6): 1615–21PubMedGoogle Scholar
  59. 59.
    Dinwiddie R. Pathogenesis of lung disease in cystic fibrosis. Respiration 2000; 67(1): 3–8PubMedGoogle Scholar
  60. 60.
    Beringer PM. New approaches to optimizing antimicrobial therapy in patients with cystic fibrosis. Curr Opin Pulm Med 1999 Nov; 5(6): 371–7PubMedGoogle Scholar
  61. 61.
    Konstan MW. Therapies aimed at airway inflammation in cystic fibrosis. Clin Chest Med 1998 Sep; 19(3): 505–13PubMedGoogle Scholar
  62. 62.
    Akira M, Kitatani F, Lee YS, et al. Diffuse panbronchiolitis: evaluation with high-resolution CT. Radiology 1988 Aug; 168(2): 433–8PubMedGoogle Scholar
  63. 63.
    Nishimura K, Kitaichi M, Izumi T, et al. Diffuse panbronchiolitis: correlation of high-resolution CT and pathologic findings. Radiology 1992 Sep; 184(3): 779–85PubMedGoogle Scholar
  64. 64.
    Hansell DM. Small airways diseases: detection and insights with computed tomography. Eur Respir J 2001 Jun; 17(6): 1294–313PubMedGoogle Scholar
  65. 65.
    Sawaki M, Mikami R, Mikasa K, et al. The long term chemotherapy with erythromycin in chronic lower respiratory tract infections — first report: comparison with amoxicillin [in Japanese]. Kansenshogaku Zasshi 1986 Jan; 60(1): 37–44PubMedGoogle Scholar
  66. 66.
    Takizawa H, Tadokoro K, Miyoshi Y, et al. Serological characterization of cold agglutinin in patients with diffuse panbronchiolitis [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1986 Mar; 24(3): 257–63PubMedGoogle Scholar
  67. 67.
    Koyama H, Nishimura K, Mio T, et al. Bronchial responsiveness and acute bronchodilator response in chronic obstructive pulmonary disease and diffuse panbronchiolitis. Thorax 1994 Jun; 49(6): 540–4PubMedGoogle Scholar
  68. 68.
    Nakata K. Revision of clinical guidelines for DPB [in Japanese]. Annual Report on the study of diffuse lung disease in 1998. Tokyo: Ministry of Health and Welfare of Japan, 1999: 109–111Google Scholar
  69. 69.
    Yamamoto M, Kondo A, Tamura M, et al. Long-term therapeutic effects of erythromycin and newquinolone antibacterial agents on diffuse panbronchiolitis [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1990 Oct; 28(10): 1305–13PubMedGoogle Scholar
  70. 70.
    Nagai H, Shishido H, Yoneda R, et al. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration 1991; 58(3-4): 145–9PubMedGoogle Scholar
  71. 71.
    Fujii T, Kadota J, Kawakami K, et al. Long term effect of erythromycin therapy in patients with chronic Pseudomonas aeruginosa infection. Thorax 1995 Dec; 50(12): 1246–52PubMedGoogle Scholar
  72. 72.
    Yamada G, Igarashi T, Itoh E, et al. Centrilobular nodules correlate with air trapping in diffuse panbronchiolitis during erythromycin therapy. Chest 2001 Jul; 120(1): 198–202PubMedGoogle Scholar
  73. 73.
    Ichikawa Y, Hotta M, Sumita S, et al. Reversible airway lesions in diffuse panbronchiolitis. Detection by high-resolution computed tomography. Chest 1995 Jan; 107(1): 120–5PubMedGoogle Scholar
  74. 74.
    Akira M, Higashihara T, Sakatani M, et al. Diffuse panbronchiolitis: follow-up CT examination. Radiology 1993 Nov; 189(2): 559–62PubMedGoogle Scholar
  75. 75.
    Sawaki M, Mikami R, Mikasa K, et al. The long term chemotherapy with erythromycin in chronic lower respiratory tract infections — second report: including cases with Pseudomonas infections [in Japanese]. Kansenshogaku Zasshi 1986 Jan; 60(1): 45–50PubMedGoogle Scholar
  76. 76.
    Yamamoto M. A double-blind placebo-controlled study on the therapeutic effect of erythromycin on DPB [in Japanese]. Annual Report on the study of diffuse lung disease in 1990. Tokyo: Ministry of Health and Welfare of Japan, 1991:18–20Google Scholar
  77. 77.
    Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 1998 Jun; 157 (6 Pt 1): 1829–32PubMedGoogle Scholar
  78. 78.
    Nakamura H, Fujishima S, Inoue T, et al. Clinical and immunoregulatory effects of roxithromycin therapy for chronic respiratory tract infection. Eur Respir J 1999 Jun; 13(6): 1371–9PubMedGoogle Scholar
  79. 79.
    Mikasa K, Sawaki M, Kita E, et al. Long-term chemotherapy using erythromycin (EM) for chronic lower airway infection: effectiveness of clarithromycin in EM ineffective cases -the fourth report [in Japanese]. Kansenshogaku Zasshi 1992 Aug; 66(8): 1097–104PubMedGoogle Scholar
  80. 80.
    Tamaoki J, Takeyama K, Tagaya E, et al. Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob Agents Chemother 1995 Aug; 39(8): 1688–90PubMedGoogle Scholar
  81. 81.
    Shirai T, Sato A, Chida K. Effect of 14-membered ring macrolide therapy on chronic respiratory tract infections and polymorphonuclear leukocyte activity. Intern Med 1995 Jun; 34(6): 469–74PubMedGoogle Scholar
  82. 82.
    Kobayashi H, Takeda H, Sakayori S, et al. Study on azithromycin in treatment of diffuse panbronchiolitis [in Japanese]. Kansenshogaku Zasshi 1995 Jun; 69(6): 711–22PubMedGoogle Scholar
  83. 83.
    Oritsu M. Effectiveness of macrolide antibiotics other than erythromycin [in Japanese]. Ther Res 1990; 11: 545–6Google Scholar
  84. 84.
    Nakata K, Taguchi Y, Kudoh S. Therapeutic guidelines for DPB [in Japanese]. Annual Report on the study of diffuse lung disease in 1999. Tokyo: Ministry of Health and Welfare of Japan, 2000:111Google Scholar
  85. 85.
    Kudoh S. Erythromycin treatment in diffuse panbronchiolitis. Curr Opin Pulm Med 1998 Mar; 4(2): 116–21PubMedGoogle Scholar
  86. 86.
    Koyama H, Geddes DM. Erythromycin and diffuse panbronchiolitis. Thorax 1997 Oct; 52(10): 915–8PubMedGoogle Scholar
  87. 87.
    Jaffe A, Bush A. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 2001 Jun; 31(6): 464–73PubMedGoogle Scholar
  88. 88.
    Rubin BK, Tamaoki J. Macrolide antibiotics as biological response modifiers. Curr Opin Investig Drugs 2000 Oct; 1(2): 169–72PubMedGoogle Scholar
  89. 89.
    Kadota J. Antiinflammatory effects of macrolide therapy in patients with diffuse panbronchiolitis, a chronic inflammatory airway disease. Recent Res Dev Antimicrob Agents Chemother 1999; 3 (Pt 1): 17–38Google Scholar
  90. 90.
    Wales D, Woodhead M. The anti-inflammatory effects of macrolides. Thorax 1999 Aug; 54Suppl. 2: S58–62PubMedGoogle Scholar
  91. 91.
    Yanagihara K, Kadoto J, Kohno S. Diffuse panbronchiolitis-pathophysiology and treatment mechanisms. Int J Antimicrob Agents 2001 Sep; 18Suppl. 1: 83–7Google Scholar
  92. 92.
    Labro MT. Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother 1998 Mar; 41Suppl. B: 37–46PubMedGoogle Scholar
  93. 93.
    Hoyt JC, Robbins RA. Macrolide antibiotics and pulmonary inflammation. FEMS Microbiol Lett 2001 Nov 27; 205(1): 1–7PubMedGoogle Scholar
  94. 94.
    Culic O, Erakovic V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 2001 Oct 19; 429(1-3): 209–29PubMedGoogle Scholar
  95. 95.
    Azuma A. Novel activity of erythromycin derivatives on inflammatory lung diseases. Recent Res Dev Resp Crit Care Med 2001; 1: 191–207Google Scholar
  96. 96.
    Rubin BK, Druce H, Ramirez OE, et al. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med 1997 Jun; 155(6): 2018–23PubMedGoogle Scholar
  97. 97.
    Goswami SK, Kivity S, Marom Z. Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis 1990 Jan; 141(1): 72–8PubMedGoogle Scholar
  98. 98.
    Tamaoki J, Isono K, Sakai N, et al. Erythromycin inhibits Cl secretion across canine tracheal epithelial cells. Eur Respir J 1992 Feb; 5(2): 234–8PubMedGoogle Scholar
  99. 99.
    Kondo M, Kanoh S, Tamaoki J, et al. Erythromycin inhibits ATP-induced intracellular calcium responses in bovine tracheal epithelial cells. Am J Respir Cell Mol Biol 1998 Nov; 19(5): 799–804PubMedGoogle Scholar
  100. 100.
    Zhao DM, Xue HH, Chida K, et al. Effect of erythromycin on ATP-induced intracellular calcium response in A549 cells. Am J Physiol Lung Cell Mol Physiol 2000 Apr; 278(4): L726–36PubMedGoogle Scholar
  101. 101.
    Hojo M, Fujita I, Hamasaki Y, et al. Erythromycin does not directly affect neutrophil functions. Chest 1994 Feb; 105(2): 520–3PubMedGoogle Scholar
  102. 102.
    Mitsuyama T, Hidaka K, Furuno T, et al. Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide. Int Arch Allergy Immunol 1997 Oct; 114(2): 111–5PubMedGoogle Scholar
  103. 103.
    Abdelghaffar H, Vazifeh D, Labro MT. Erythromycin A-derived macrolides modify the functional activities of human neutrophils by altering the phospholipase D-phosphatidate phosphohydrolase transduction pathway: L-cladinose is involved both in alterations of neutrophil functions and modulation of this transductional pathway. J Immunol 1997 Oct 15; 159(8): 3995–4005PubMedGoogle Scholar
  104. 104.
    Aoshiba K, Nagai A, Konno K. Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 1995 Apr; 39(4): 872–7PubMedGoogle Scholar
  105. 105.
    Takizawa H, Desaki M, Ohtoshi T, et al. Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med 1997 Jul; 156(1): 266–71PubMedGoogle Scholar
  106. 106.
    Desaki M, Takizawa H, Ohtoshi T, et al. Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 2000 Jan 7; 267(1): 124–8PubMedGoogle Scholar
  107. 107.
    Aoki Y, Kao PN. Erythromycin inhibits transcriptional activation of NF-kappaB, but not NFAT, through calcineurin-independent signaling in T cells. Antimicrob Agents Chemother 1999 Nov; 43(11): 2678–84PubMedGoogle Scholar
  108. 108.
    Abe S, Nakamura H, Inoue S, et al. Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2000 Jan; 22(1): 51–60PubMedGoogle Scholar
  109. 109.
    Fujii T, Kadota J, Morikawa T, et al. Inhibitory effect of erythromycin on interleukin 8 production by 1 alpha,25-dihydroxyvitamin D3-stimulated THP-1 cells. Antimicrob Agents Chemother 1996 Jun; 40(6): 1548–51PubMedGoogle Scholar
  110. 110.
    Khair OA, Devalia JL, Abdelaziz MM, et al. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J 1995 Sep; 8(9): 1451–7PubMedGoogle Scholar
  111. 111.
    Takahashi T, Suga M, Matsukawa A, et al. Erythromycin attenuates an experimental model of chronic bronchiolitis via augmenting monocyte chemoattractant protein-1. Eur Respir J 2001 Mar; 17(3): 360–7PubMedGoogle Scholar
  112. 112.
    Yanagihara K, Tomono K, Kuroki M, et al. Intrapulmonary concentrations of inflammatory cytokines in a mouse model of chronic respiratory infection caused by Pseudomonas aeruginosa. Clin Exp Immunol 2000 Oct; 122(1): 67–71PubMedGoogle Scholar
  113. 113.
    Nelson S, Summer WR, Terry PB, et al. Erythromycin-induced suppression of pulmonary antibacterial defenses. A potential mechanism of superinfection in the lung. Am Rev Respir Dis 1987 Nov; 136(5): 1207–12PubMedGoogle Scholar
  114. 114.
    Keicho N, Kudoh S, Yotsumoto H, et al. Antilymphocytic activity of erythromycin distinct from that of FK506 or cyclosporin A. J Antibiot (Tokyo) 1993 Sep; 46(9): 1406–13Google Scholar
  115. 115.
    Morikawa K, Oseko F, Morikawa S, et al. Immunomodulatory effects of three macrolides, midecamycin acetate, josamycin, and clarithromycin, on human T-lymphocyte function in vitro. Antimicrob Agents Chemother 1994 Nov; 38(11): 2643–7PubMedGoogle Scholar
  116. 116.
    Morikawa T, Kadota JI, Kohno S, et al. Superoxide dismutase in alveolar macrophages from patients with diffuse panbronchiolitis. Respiration 2000; 67(5): 546–51PubMedGoogle Scholar
  117. 117.
    Roche Y, Fay M, Gougerot-Pocidalo MA. Interleukin-1 production by antibiotic-treated human monocytes. J Antimicrob Chemother 1988 May; 21(5): 597–607PubMedGoogle Scholar
  118. 118.
    Iino Y, Toriyama M, Kudo K, et al. Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol Suppl 1992 Oct; 157: 16–20PubMedGoogle Scholar
  119. 119.
    Kita E, Sawaki M, Nishikawa F, et al. Enhanced interleukin production after long-term administration of erythromycin stearate. Pharmacology 1990; 41(4): 177–83PubMedGoogle Scholar
  120. 120.
    Sugiyama Y, Yanagisawa K, Tominaga SI, et al. Effects of long-term administration of erythromycin on cytokine production in rat alveolar macrophages. Eur Respir J 1999 Nov; 14(5): 1113–6PubMedGoogle Scholar
  121. 121.
    Tamaoki J, Kondo M, Kohri K, et al. Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 1999 Sep 1; 163(5): 2909–15PubMedGoogle Scholar
  122. 122.
    Keicho N, Kudoh S, Yotsumoto H, et al. Erythromycin promotes monocyte to macrophage differentiation. J Antibiot (Tokyo) 1994 Jan; 47(1): 80–9Google Scholar
  123. 123.
    Tateda K, Ishii Y, Matsumoto T, et al. Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Antimicrob Agents Chemother 1996 Oct; 40(10): 2271–5PubMedGoogle Scholar
  124. 124.
    Howe RA, Spencer RC. Macrolides for the treatment of Pseudomonas aeruginosa infections? J Antimicrob Chemother 1997 Aug; 40(2): 153–5PubMedGoogle Scholar
  125. 125.
    Kita E, Sawaki M, Oku D, et al. Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin. J Antimicrob Chemother 1991 Mar; 27(3): 273–84PubMedGoogle Scholar
  126. 126.
    Sakata K, Yajima H, Tanaka K, et al. Erythromycin inhibits the production of elastase by Pseudomonas aeruginosa without affecting its proliferation in vitro. Am Rev Respir Dis 1993 Oct; 148 (4 Pt 1): 1061–5PubMedGoogle Scholar
  127. 127.
    Molinari G, Guzman CA, Pesce A, et al. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 1993 May; 31(5): 681–8PubMedGoogle Scholar
  128. 128.
    Kobayashi H. Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 1995 Dec 29; 99(6A): 26S–30SPubMedGoogle Scholar
  129. 129.
    Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998 Apr 10; 280(5361): 295–8PubMedGoogle Scholar
  130. 130.
    Tateda K, Comte R, Pechere JC, et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001 Jun; 45(6): 1930–3PubMedGoogle Scholar
  131. 131.
    Feldman C, Anderson R, Theron AJ, et al. Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro. Inflammation 1997 Dec; 21(6): 655–65PubMedGoogle Scholar
  132. 132.
    Muranaka H, Suga M, Sato K, et al. Superoxide scavenging activity of erythromycin-iron complex. Biochem Biophys Res Commun 1997 Mar 6; 232(1): 183–7PubMedGoogle Scholar
  133. 133.
    Gorrini M, Lupi A, Viglio S, et al. Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol 2001 Oct; 25(4): 492–9PubMedGoogle Scholar
  134. 134.
    Jaffe A, Francis J, Rosenthal M, et al. Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 1998 Feb 7; 351(9100): 420PubMedGoogle Scholar
  135. 135.
    Altschuler EL. Azithromycin, the multidrug-resistant protein, and cystic fibrosis. Lancet 1998 Apr 25; 351(9111): 1286PubMedGoogle Scholar
  136. 136.
    Omura S, Tsuzuki K, Sunazuka T, et al. Macrolides with gastrointestinal motor stimulating activity. J Med Chem 1987 Nov; 30(11): 1941–3PubMedGoogle Scholar
  137. 137.
    Kucers A, Crowe SM, Grayson ML, et al. The use of antibiotics: a clinical review of antibacterial, antifungal and antiviral drugs. 5th ed. Oxford: Butterworth-Heinemann, 1997Google Scholar
  138. 138.
    Taguchi Y, Nakata K, Kudoh S. New guideline of erythromycin therapy and a report of the results of questionnaire about side effects of erythromycin therapy for diffuse panbronchiolitis. Annual Report on the study of diffuse lung disease in 1998 [in Japanese]. Tokyo: Ministry of Health and Welfare of Japan, 1999:112–115Google Scholar
  139. 139.
    Niederman MS, Mandell LA, Anzueto A, et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med 2001 Jun; 163(7): 1730–54PubMedGoogle Scholar
  140. 140.
    Yamanaka Y, Tamari M, Nakahata T, et al. Gene expression profiles of human small airway epithelial cells treated with low doses of 14- and 16-membered macrolides. Biochem Biophys Res Commun 2001 Sep 14; 287(1): 198–203PubMedGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • Naoto Keicho
    • 1
  • Shoji Kudoh
    • 2
  1. 1.Department of Respiratory Diseases, Research InstituteInternational Medical Center of JapanTokyo, 1-21-1Japan
  2. 2.Fourth Department of Internal MedicineNippon Medical SchoolTokyoJapan

Personalised recommendations