Advertisement

The Journal of the Astronautical Sciences

, Volume 56, Issue 3, pp 359–373 | Cite as

The nature of the quaternion

  • Malcolm D. Shuster
Article

Abstract

Some of the confusions concerning quaternions as they are employed in spacecraft attitude work are discussed. The order of quaternion multiplication is discussed in terms of its historical development and its consequences for the quaternion imaginaries. The different formulations for the quaternions are also contrasted. It is shown that the three Hamilton imaginaries cannot be interpreted as the basis of the vector space of physical vectors but only as constant numerical column vectors, the autorepresentation of a physical basis.

Keywords

Geometric Algebra Spacecraft Attitude Quaternion Multiplication Attitude Matrix Quaternion Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ALTMANN, S. L. Rotations, Quaternions, and Double Groups, Oxford, Oxford University Press, 1986.zbMATHGoogle Scholar
  2. [2]
    SHUSTER, M. D. “A Survey of Attitude Representations,” The Journal of the Astronautical Sciences, Vol. 41, No. 4, October–December 1993, pp. 439–517.MathSciNetGoogle Scholar
  3. [3]
    KUIPERS, J. B. Quaternions and Rotation Sequences, Princeton, Princeton University Press, 1999.zbMATHGoogle Scholar
  4. [4]
    EULER, L. “Problema Algebraicum ob Affectiones Prorsus Singulares Memorabile,” Novi Commentari Academiae Scientiarum Imperialis Petropolitanae, Vol. 15, 1770, pp. 75–106.Google Scholar
  5. [5]
    EULER, L. “Nova Methodus Motum Corporum Rigidorum Determinandi,” Novi Commentari Academiae Scientiarum Imperialis Petropolitanae, Vol. 20, 1775, pp. 208–238, also Leonhardi Euleri Opera Omnia, Series Secunda, Opera Mechanica Et Astronomica, Basel, 1968, Vol. 9, pp. 99-125.Google Scholar
  6. [6]
    RODRIGUES, O. “Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ses déplacements consideéerés indépendamment des causes qui peuvent les produire,” Journal des Mathématiques Pures et Appliquées, Vol. 5, 1840, pp. 380–440.Google Scholar
  7. [7]
    GIBBS, J.W. Vector Analysis, E. B. Wilson, ed., New York, Scribners, 1901.Google Scholar
  8. [8]
    HAMILTON, W. R. “On Quaternions; or a New System of Imaginaries in Algebra,” Philosophical Magazine, Vol. 25, 1844, pp. 489–495.Google Scholar
  9. [9]
    SHUSTER, M. D. “Attitude Analysis in Flatland: the Plane Truth,” The Journal of the Astronautical Sciences, Vol. 52, Nos. 1 and 2, January–June 2004, pp. 195–209.MathSciNetGoogle Scholar
  10. [10]
    CAYLEY, A. “On the Motion of Rotation of a Solid Body,” Cambridge Mathematics Journal, Vol. 3, 1843, pp. 224–232.Google Scholar
  11. [11]
    CAYLEY, A. “Recherches sur les Matrices dont les termes sont des fonctions linéaires d’une seule Indeterminée,” Journal für die reine und angewandte Mathematik, Berlin, Crelle, 1855, pp. 313–317.Google Scholar
  12. [12]
    CAYLEY, A. “Memoire on the Theory of Matrices,” Philosophical Transactions 1, Vol. CXLVIII, 1858, pp. 17–37.CrossRefGoogle Scholar
  13. [13]
    CAYLEY, A. “On Certain Results Relating to Quaternions,” Philosophical Magazine, Vol. 26, 1845, pp. 141–145.Google Scholar
  14. [14]
    HAMILTON, W. R. Elements of Quaternions, London, Longmans, Green & Co., 1866.Google Scholar
  15. [15]
    GIBBS, J.W. Scientific Papers, Vol. II, New York, Dover, 1961.Google Scholar
  16. [16]
    HEAVISIDE, O. Electromagnetic Theory, London, 1893 (Vol. 1), 1899 (Vol. 2), 1912 (Vol. 3).Google Scholar
  17. [17]
    CROWE, M. J. A History of Vector Analysis, New York, Dover, 1967.zbMATHGoogle Scholar
  18. [18]
    VAN DER WAERDEN, B. L. A History of Algebra, New York and Berlin, Springer Scientific + Business Media, 1985.zbMATHGoogle Scholar
  19. [19]
    WERTZ, J. R. (ed.) Spacecraft Attitude Determination and Control, New York and Berlin, Springer Science + Business Media, 1978.Google Scholar
  20. [20]
    SHUSTER, M. D. “The Youngest Quadrant,” in “In My Estimation,” The Journal of the Astronautical Sciences, Vol. 54, Nos. 3–4, July–December 2006, pp. 273–297.Google Scholar
  21. [21]
    FALLON, L. S. III “Quaternions,” Appendix D in J. R. Wertz (ed.), op. cit., pp. 758–59.Google Scholar
  22. [22]
    MARKLEY, F. L. “Parameterization of the Attitude,” Section 12.1 in J. R. Wertz (ed), op. cit., pp. 410–420.Google Scholar
  23. [23]
    WIE, B. Space Vehicle Dynamics and Control, Reston, Virginia, American Institute of Aeronautics and Astronautics, 2008.Google Scholar
  24. [24]
    SCHAUB, H. and JUNKINS, J. L. Analytical Mechanics of Space Systems, Reston, Virginia, American Institute of Aeronautics and Astronautics, 2003.Google Scholar
  25. [25]
    CRASSIDIS, J. L. and JUNKINS, J. L. Optimal Estimation of Dynamic Systems, Boca Raton, Florida, Chapman and Hall/CRC, 2004.zbMATHCrossRefGoogle Scholar
  26. [26]
    SHUSTER, M. D. and DELLINGER, W. Chapter 5, “Spacecraft Attitude Determination and Control,” in PISCANE, V. L. (ed.), Fundamentals of Space Systems, Oxford, Oxford University Press, 2005, pp. 236–325.Google Scholar
  27. [27]
    HUGHES, P. C. Spacecraft Attitude Dynamics, New York, John Wiley & Sons, 1986; reprint: Mineola, New York, Dover Publications, 2004.Google Scholar
  28. [28]
    HAMILTON, W. R. Lectures on Quaternions, Dublin, Hodges & Smith, 1853.Google Scholar
  29. [29]
    CAYLEY, A. “Coordinates versus Quaternions,” Proceedings of the Royal Society of Edinburgh, Vol. 20, 1893–1894 session (published 1895), pp. 271–275.Google Scholar
  30. [30]
    TAIT, P. G. “On the Intrinsic Nature of the Quaternion,” Proceedings of the Royal Society of Edinburgh, Vol. 20, 1893–1894 session (published 1895), pp. 276–284.Google Scholar
  31. [31]
    HESTENES, D. New Foundations for Classical Mechanics, second edition, New York and Berlin, Springer Scientific + Business Media, 1999.zbMATHGoogle Scholar

Copyright information

© American Astronautical Society, Inc. 2008

Authors and Affiliations

  1. 1.Acme Spacecraft CompanyGermantownUSA

Personalised recommendations