Molecular Diagnosis & Therapy

, Volume 10, Issue 1, pp 1–15 | Cite as

Genetic and Epigenetic Biomarkers in Cancer

Improving Diagnosis, Risk Assessment, and Disease Stratification
  • Mukesh Verma
  • Daniela Seminara
  • Fernando J. Arena
  • Christy John
  • Kumiko Iwamoto
  • Virginia Hartmuller


Gene expression patterns change during the initiation, progression, and development of cancer, as a result of both genetic and epigenetic mechanisms. Genetic changes arise due to irreversible changes in the nucleotide sequence, whereas epigenetic changes occur due to changes in chromatin conformation, histone acetylation, and methylation of the CpG islands located primarily in the promoter region of a gene. Both genetic and epigenetic markers can potentially be utilized to identify different stages of tumor development. Several such markers exhibit high sensitivity and specificity for different tumor types and can be assayed in biofluids and other specimens collected by noninvasive technologies. In spite of the availability of large numbers of diagnostic markers, only a few have been clinically validated so far. The current status and the challenges in the field of genetic and epigenetic markers in cancer diagnosis, risk assessment, and disease stratification are discussed.


  1. 1.
    Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000: the global picture. Eur J Cancer 2001; 37Suppl. 8: S4–66PubMedCrossRefGoogle Scholar
  2. 2.
    Kelloff GJ, Coffey DS, Chabner BA, et al. Prostate-specific antigen doubling time as a surrogate marker for evaluation of oncologic drugs to treat prostate cancer. Clin Cancer Res 2004; 10(11): 3927–33PubMedCrossRefGoogle Scholar
  3. 3.
    Negm RS, Verma M, Srivastava S. The promise of biomarkers in cancer screening and detection. Trends Mol Med 2002; 8(6): 288–93PubMedCrossRefGoogle Scholar
  4. 4.
    Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci 2004; 41(5-6): 585–607PubMedCrossRefGoogle Scholar
  5. 5.
    Verma M. Biomarkers for risk assessment in molecular epidemiology of cancer. Technol Cancer Res Treat 2004; 3(5): 505–14PubMedGoogle Scholar
  6. 6.
    Verma M, Srivastava S. New cancer biomarkers deriving from NCI early detection research. Recent Results Cancer Res 2003; 163: 72–84PubMedCrossRefGoogle Scholar
  7. 7.
    Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 2002; 3(12): 755–63PubMedCrossRefGoogle Scholar
  8. 8.
    Verma M, Wright GL, Hanash SM, et al. Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N Y Acad Sci 2001; 945: 103–15PubMedCrossRefGoogle Scholar
  9. 9.
    Fleming JB, Shen GL, Holloway SE, et al. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 2005 Jul; 3(7): 413–23PubMedCrossRefGoogle Scholar
  10. 10.
    Patel JD, Bach PB, Kris MG. Lung cancer in US women: a contemporary epidemic. JAMA 2004; 291(14): 1763–8PubMedCrossRefGoogle Scholar
  11. 11.
    Makridakis NM, Reichardt JK. Molecular epidemiology of androgen-metabolic loci in prostate cancer: predisposition and progression. J Urol 2004; 171 (2 Pt 2): S25–8PubMedCrossRefGoogle Scholar
  12. 12.
    Dumitrescu RG, Cotarla I. Understanding breast cancer risk: where do we stand in 2005? J Cell Mol Med 2005; 9(1): 208–21PubMedCrossRefGoogle Scholar
  13. 13.
    Ulrich CM, Curtin K, Samowitz W, et al. MTHFR variants reduce the risk of G:C→A:T Transition mutations within the p53 tumor suppressor gene in colon tumors. J Nutr 2005 Oct; 135(10): 2462–7PubMedGoogle Scholar
  14. 14.
    Bergman-Jungestrom M, Wingren S. Catechol-O-methyltransferase (COMT) gene polymorphism and breast cancer risk in young women. Br J Cancer 2001; 85(6): 859–62PubMedCrossRefGoogle Scholar
  15. 15.
    Lang NP. Molecular epidemiology: new insights into diagnosis and prognosis. J Surg Oncol 2004; 85(1): 4–6PubMedCrossRefGoogle Scholar
  16. 16.
    Aldape KD, Okcu MF, Bondy ML, et al. Molecular epidemiology of glioblastoma. Cancer J 2003; 9(2): 99–106PubMedCrossRefGoogle Scholar
  17. 17.
    Slattery ML, Curtin K, Ma K, et al. GSTM-1 and NAT2 and genetic alterations in colon tumors. Cancer Causes Control 2002; 13(6): 527–34PubMedCrossRefGoogle Scholar
  18. 18.
    Visakorpi T. The molecular genetics of prostate cancer. Urology 2003; 62(5 Suppl. 1): 3–10PubMedCrossRefGoogle Scholar
  19. 19.
    Puntoni R, Filiberti R, Cerrano PG, et al. Implementation of a molecular epidemiology approach to human pleural malignant mesothelioma. Mutat Res 2003; 544(2-3): 385–96PubMedCrossRefGoogle Scholar
  20. 20.
    Wei SC, Yu CY, Tsai-Wu JJ, et al. Low mutation rate of hMSH2 and hMLH1 in Taiwanese hereditary non-polyposis colorectal cancer. Clin Genet 2003; 64(3): 243–51PubMedCrossRefGoogle Scholar
  21. 21.
    Mitchell RJ, Farrington SM, Dunlop MG, et al. Mismatch repair genes hMLH1 and hMSH2 and colorectal cancer: a HuGE review. Am J Epidemiol 2002; 156(10): 885–902PubMedCrossRefGoogle Scholar
  22. 22.
    Edlich RF, Winters KL, Lin KY. Breast cancer and ovarian cancer genetics. J Long Term Eff Med Implants 2005; 15(5): 533–45PubMedCrossRefGoogle Scholar
  23. 23.
    Gorski B, Cybulski C, Huzarski T, et al. Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat. 2005 Jul; 92(1): 19–24PubMedCrossRefGoogle Scholar
  24. 24.
    Guran S, Ozet A, Dede M, et al. Hereditary breast cancer syndromes in a Turkish population: results of molecular germline analysis. Cancer Genet Cytogenet 2005 Jul 15; 160(2): 164–8PubMedCrossRefGoogle Scholar
  25. 25.
    Capponcelli S, Pedrini E, Cerone MA, et al. Evaluation of the molecular mechanisms involved in the gain of function of a Li-Fraumeni TP53 mutation. Hum Mutat 2005 Aug; 26(2): 94–103PubMedCrossRefGoogle Scholar
  26. 26.
    Siddiqui R, Onel K, Facio F, et al. The TP53 mutational spectrum and frequency of CHEK2*1100delC in Li-Fraumeni-like kindreds. Fam Cancer 2005; 4(2): 177–81PubMedCrossRefGoogle Scholar
  27. 27.
    Figueiredo BC, Sandrini R, Zambetti GP, et al. Penetrance of adrenocortical tumors associated with the germline TP53 R337H mutation. J Med Genet. Epub 2005 Jul 20Google Scholar
  28. 28.
    Sabate JM, Gomez A, Torrubia S, et al. Evaluation of breast involvement in relation to Cowden syndrome: a radiological and clinicopathological study of patients with PTEN germ-line mutations. Eur Radiol. 2005 Oct 6, Epub ahead of printGoogle Scholar
  29. 29.
    Traverso G, Shuber A, Levin B, et al. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N Engl J Med 2002; 346(5): 311–20PubMedCrossRefGoogle Scholar
  30. 30.
    Nakanishi C, Yamaguchi T, Iijima T, et al. Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology 2004; 67(5-6): 476–9PubMedCrossRefGoogle Scholar
  31. 31.
    Lleonart ME, Ramony Cajal S, Groopman JD, et al. Sensitive and specific detection of K-ras mutations in colon tumors by short oligonucleotide mass analysis. Nucleic Acids Res 2004; 32(5): e53PubMedCrossRefGoogle Scholar
  32. 32.
    Qi X, Tang J, Pramanik R, et al. p38 MAPK activation selectively induces cell death in K-ras mutated human colon cancer cells through regulation of vitamin D receptor. J Biol Chem 2004 May 21; 279(21): 22138–44PubMedCrossRefGoogle Scholar
  33. 33.
    Patel M. Helical computed tomography has a role in the screening of lung cancer: the pro argument. Can Respir J 2004; 11(3): 214–5PubMedGoogle Scholar
  34. 34.
    Musat M, Korbonits M, Kola B, et al. Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 2005 Jun; 12(2): 423–33PubMedCrossRefGoogle Scholar
  35. 35.
    Pedrero JM, Carracedo DG, Pinto CM, et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer 2005 Mar 20; 114(2): 242–8PubMedCrossRefGoogle Scholar
  36. 36.
    Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 2003 Oct; 13(4): 507–18PubMedCrossRefGoogle Scholar
  37. 37.
    Puxeddu E, Fagin JA. Genetic markers in thyroid neoplasia. Endocrinol Metab Clin North Am 2001; 30(2): 493–513, xPubMedCrossRefGoogle Scholar
  38. 38.
    De Vivo I, Huggins GS, Hankinson SE, et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci U S A 2002; 99(19): 12263–8PubMedCrossRefGoogle Scholar
  39. 39.
    Smid-Koopman E, Blok LJ, Chadha-Ajwani S, et al. Gene expression profiles of human endometrial cancer samples using a cDNA-expression array technique: assessment of an analysis method. Br J Cancer 2000; 83(2): 246–51PubMedCrossRefGoogle Scholar
  40. 40.
    Soung YH, Lee JW, Kim SY, et al. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 2005; 65(3): 815–21PubMedGoogle Scholar
  41. 41.
    Katerinaki E, Evans GS, Lorigan PC, et al. TNF-alpha increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes. Br J Cancer 2003; 89(6): 1123–9PubMedCrossRefGoogle Scholar
  42. 42.
    Pokorny RM, Hunt L, Galandiuk S. What’s new with tumor markers for colorectal cancer? Dig Surg 2000; 17(3): 209–15PubMedCrossRefGoogle Scholar
  43. 43.
    Moss EL, Hollingworth J, Reynolds TM. The role of CA125 in clinical practice. J Clin Pathol 2005; 58(3): 308–12PubMedCrossRefGoogle Scholar
  44. 44.
    Bailey-Wilson JE, Arnos CI, Pinney SM, et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 2004; 75(3): 460–74PubMedCrossRefGoogle Scholar
  45. 45.
    Palumbo KS, Wands JR, Safran H, et al. Human aspartyl (asparaginyl) beta-hydroxylase monoclonal antibodies: potential biomarkers for pancreatic carcinoma. Pancreas 2002; 25(1): 39–44PubMedCrossRefGoogle Scholar
  46. 46.
    Chan MW, Chan LW, Tang NL, et al. Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int J Cancer 2003; 104(5): 611–6PubMedCrossRefGoogle Scholar
  47. 47.
    Horikawa Y, Sugano K, Shigyo M, et al. Hypermethylation of an E-cadherin (CDH1) promoter region in high grade transitional cell carcinoma of the bladder comprising carcinoma in situ. J Urol 2003; 169(4): 1541–5PubMedCrossRefGoogle Scholar
  48. 48.
    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997–1003PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang SJ, Endo S, Saito T, et al. Primary malignant lymphoma of the brain: frequent abnormalities and inactivation of p14 tumor suppressor gene. Cancer Sci 2005; 96(1): 38–41PubMedCrossRefGoogle Scholar
  50. 50.
    Gao Y, Guan M, Su B, et al. Hypermethylation of the RASSF1A gene in gliomas. Clin Chim Acta 2004; 349(1-2): 173–9PubMedCrossRefGoogle Scholar
  51. 51.
    Mollemann M, Wolter M, Felsberg J, et al. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 2005; 113(3): 379–85PubMedCrossRefGoogle Scholar
  52. 52.
    Blan JL, Wager M, Guilhot J, et al. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas. J Neurooncol 2004; 68(3): 275–83CrossRefGoogle Scholar
  53. 53.
    David GL, Yegnasubramanian S, Kumar A, et al. MDR1 Promoter Hypermethylation in MCF-7 human breast cancer cell: changes in chromatin structure induced by treatment with 5-aza-cytidine. Cancer Biol Ther 2004; 3(6): 540–8PubMedGoogle Scholar
  54. 54.
    Bandyopadhyay S, Pai SK, Hirota S, et al. Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene 2004 Jul 22; 23(33): 5675–81PubMedCrossRefGoogle Scholar
  55. 55.
    Issa JP, Shen L, Toyota M. CIMP, at last. Gastroenterology 2005 Sep; 129(3): 1121–4PubMedCrossRefGoogle Scholar
  56. 56.
    Petko Z, Ghiassi M, Shuber A, et al. Related articles, aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res 2005 Feb 1; 11(3): 1203–9PubMedGoogle Scholar
  57. 57.
    Lind GE, Thorstensen L, Lovig T, et al. A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines. Mol Cancer 2004 Oct 11; 3: 28PubMedCrossRefGoogle Scholar
  58. 58.
    Kanaya T, Kyo S, Maida Y, et al. Frequent hypermethylation of MLH1 promoter in normal endometrium of patients with endometrial cancers. Oncogene 2003; 22(15): 2352–60PubMedCrossRefGoogle Scholar
  59. 59.
    Bian YS, Osterheld MC, Fontolliet C, et al. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology 2002; 122(4): 1113–21PubMedCrossRefGoogle Scholar
  60. 60.
    Xing EP, Nie Y, Song Y, et al. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res 1999; 5(10): 2704–13PubMedGoogle Scholar
  61. 61.
    Klump B, Hsieh CJ, Holzmann K, et al. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 1998; 115(6): 1381–6PubMedCrossRefGoogle Scholar
  62. 62.
    Koscielny S, V Eggeling F, Dahse R. [Investigations to the influence of tumor supressor gene p16 inactivation on the prognosis of head and neck squamous cell carcinoma]. Laryngorhinootologie 2004; 83(6): 374–80PubMedCrossRefGoogle Scholar
  63. 63.
    Hoque MO, Begum S, Topaloglu O, et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 2004; 64(15): 5511–7PubMedCrossRefGoogle Scholar
  64. 64.
    Lenz G, Hutter G, Hiddemann W, et al. Promoter methylation and expression of DNA repair genes hMLH1 and MGMT in acute myeloid leukemia. Ann Hematol 2004; 83(10): 628–33PubMedCrossRefGoogle Scholar
  65. 65.
    De Zhu J. The altered DNA methylation pattern and its implications in liver cancer. Cell Res 2005; 15(4): 272–80PubMedCrossRefGoogle Scholar
  66. 66.
    Laird PW. Cancer epigenetics. Hum Mol Genet 2005; 14 Spec No 1: R65–76PubMedCrossRefGoogle Scholar
  67. 67.
    Maruyama R, Sugio K, Yoshino I, et al. Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer 2004; 100(7): 1472–7PubMedCrossRefGoogle Scholar
  68. 68.
    Yang Y, Takeuchi S, Tsukasaki K, et al. Methylation analysis of the adenomatous polyposis coli (APC) gene in adult T-cell leukemia/lymphoma. Leuk Res 2005; 29(1): 47–51PubMedCrossRefGoogle Scholar
  69. 69.
    Burrows JF, Chanduloy S, McIlhatton MA, et al. Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J Pathol 2003; 201(4): 581–8PubMedCrossRefGoogle Scholar
  70. 70.
    Klump B, Hsieh CJ, Nehls O, et al. Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br J Cancer 2003; 88(2): 217–22PubMedCrossRefGoogle Scholar
  71. 71.
    Sakai M, Hibi K, Koshikawa K, et al. Frequent promoter methylation and gene silencing of CDH13 in pancreatic cancer. Cancer Sci 2004; 95(7): 588–91PubMedCrossRefGoogle Scholar
  72. 72.
    Sato N, Matsubayashi H, Fukushima N, et al. The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther 2005; 4(1): 70–6PubMedCrossRefGoogle Scholar
  73. 73.
    Tokumaru Y, Harden SV, Sun DI, et al. Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin Cancer Res 2004; 10(16): 5518–22PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou M, Tokumaru Y, Sidransky D, et al. Quantitative GSTP1 methylation levels correlate with Gleason grade and tumor volume in prostate needle biopsies. J Urol 2004; 171 (6 Pt 1): 2195–8PubMedCrossRefGoogle Scholar
  75. 75.
    Mori T, Kim J, Yamano T, et al. Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 2005; 65(5): 1800–7PubMedCrossRefGoogle Scholar
  76. 76.
    Brown VL, Harwood CA, Crook T, et al. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol 2004; 122(5): 1284–92PubMedCrossRefGoogle Scholar
  77. 77.
    Oshimo Y, Nakayama H, Ito R, et al. Promoter methylation of cyclin D2 gene in gastric carcinoma. Int J Oncol 2003; 23(6): 1663–70PubMedGoogle Scholar
  78. 78.
    Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4(2): 143–53PubMedCrossRefGoogle Scholar
  79. 79.
    Sargent DJ, Conley BA, Allegra C, et al. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 2005; 23(9): 2020–7PubMedCrossRefGoogle Scholar
  80. 80.
    Zhu Y, Spitz MR, Amos CI, et al. An evolutionary perspective on single-nucleotide polymorphism screening in molecular cancer epidemiology. Cancer Res 2004; 64(6): 2251–7PubMedCrossRefGoogle Scholar
  81. 81.
    Cox DG. AACR Special Conference: SNPs, haplotypes, and cancer: applications in molecular epidemiology, Key Biscayne, Florida, USA, 2003 Sep 13–17. Breast Cancer Res 2004; 6(2): E9CrossRefGoogle Scholar
  82. 82.
    Casey G, Lindor NM, Papadopoulos N, et al. Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer. JAMA 2005; 293(7): 799–809PubMedCrossRefGoogle Scholar
  83. 83.
    Vaish M, Mandhani A, Mittal RD, et al. Microsatellite instability as prognostic marker in bladder tumors: a clinical significance [letter]. BMC Urol 2005; 5(1): 2PubMedCrossRefGoogle Scholar
  84. 84.
    Cox DG, Kraft P, Hankinson SE, et al. Haplotype analysis of common variants in the BRCA1 gene and risk of sporadic breast cancer. Breast Cancer Res 2005; 7(2): R171–5PubMedCrossRefGoogle Scholar
  85. 85.
    Alonso A, Alves C, Suarez-Mier MP, et al. Mitochondrial DNA haplotyping revealed the presence of mixed up benign and neoplastic tissue sections from two individuals on the same prostatic biopsy slide. J Clin Pathol 2005; 58(1): 83–6PubMedCrossRefGoogle Scholar
  86. 86.
    Mitra S, Misra C, Singh RK, et al. Association of specific genotype and haplotype of p53 gene with cervical cancer in India. J Clin Pathol 2005; 58(1): 26–31PubMedCrossRefGoogle Scholar
  87. 87.
    Steinman CR. Free DNA in serum and plasma from normal adults. J Clin Invest 1975; 56(2): 512–5PubMedCrossRefGoogle Scholar
  88. 88.
    Boddy JL, Gal S, Malone PR, et al. Prospective study of quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate disease. Clin Cancer Res 2005; 11(4): 1394–9PubMedCrossRefGoogle Scholar
  89. 89.
    Gautschi O, Bigosch C, Huegli B, et al. Circulating deoxyribonucleic acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol 2004; 22(20): 4157–64PubMedCrossRefGoogle Scholar
  90. 90.
    Potter JD. Epidemiology, cancer genetics and microarrays: making correct inferences, using appropriate designs. Trends Genet 2003; 19(12): 690–5PubMedCrossRefGoogle Scholar
  91. 91.
    Gunn L, Smith MT. Emerging biomarker technologies. IARC Sci Publ 2004; (157): 437-50Google Scholar
  92. 92.
    Srinivas PR, Barker P, Srivastava S. Nanotechnology in early detection of cancer. Lab Invest 2002; 82(5): 657–62PubMedCrossRefGoogle Scholar
  93. 93.
    Kasili PM, Song JM, Vo-Dinh T. Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 2004; 126(9): 2799–806PubMedCrossRefGoogle Scholar
  94. 94.
    Billich A, Bilban M, Meisner NC, et al. Confocal fluorescence detection expanded to UV excitation: the first continuous fluorimetric assay of human steroid sulfatase in nanoliter volume. Assay Drug Dev Technol 2004; 2(1): 21–30PubMedCrossRefGoogle Scholar
  95. 95.
    Kurita R, Hayashi K, Horiuchi T, et al. Differential measurement with a microfluidic device for the highly selective continuous measurement of histamine released from rat basophilic leukemia cells (RBL-2H3). Lab Chip 2002; 2(1): 34–8PubMedCrossRefGoogle Scholar
  96. 96.
    Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/ mRNA molecules using genomagnetic nanocapturers. Anal Chem 2003; 75(14): 3476–83PubMedCrossRefGoogle Scholar
  97. 97.
    Farmer PB, Singh R, Kaur B, et al. Molecular epidemiology studies of carcinogenic environmental pollutants: effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 2003; 544(2-3): 397–402PubMedCrossRefGoogle Scholar
  98. 98.
    Haga Y, Hiroshima K, Iyoda A, et al. Frequency of loss of heterozygosity at 3 p, 9 p, 13 q, and 17 p is related to proliferative activity in smokers with stage I non-small cell lung cancer. Thorac Cardiovasc Surg 2005; 53(2): 114–7PubMedCrossRefGoogle Scholar
  99. 99.
    Yoshino I, Osoegawa A, Yohena T, et al. Loss of heterozygosity (LOH) in non-small cell lung cancer: difference between adenocarcinoma and squamous cell carcinoma. Respir Med 2005; 99(3): 308–12PubMedCrossRefGoogle Scholar
  100. 100.
    Yin D, Xie D, De Vos S, et al. Imprinting status of DLK1 gene in brain tumors and lymphomas. Int J Oncol 2004; 24(4): 1011–5PubMedGoogle Scholar
  101. 101.
    Ulaner GA, Yang Y, Hu JF, et al. CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues. Endocrinology 2003; 144(10): 4420–6PubMedCrossRefGoogle Scholar
  102. 102.
    Muller S, Zirkel D, Westphal M, et al. Genomic imprinting of IGF2 and H19 in human meningiomas. Eur J Cancer 2000; 36(5): 651–5PubMedCrossRefGoogle Scholar
  103. 103.
    Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/ mRNA molecules using genomagnetic nanocapturers. Anal Chem 2003 Jul 15; 75(14): 3476–83PubMedCrossRefGoogle Scholar
  104. 104.
    Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403(6769): 503–11PubMedCrossRefGoogle Scholar
  105. 105.
    Lossos IS, Czerwinski DK, Alizadeh AA, et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 2004; 350(18): 1828–37PubMedCrossRefGoogle Scholar
  106. 106.
    Li J, Zha H. Simultaneous classification and feature clustering using discriminant vector quantization with applications to microarray data analysis. Proc IEEE Comput Soc Bioinform Conf 2002; 1: 246–55PubMedGoogle Scholar
  107. 107.
    Alizadeh AA, Ross DT, Perou CM, et al. Towards a novel classification of human malignancies based on gene expression patterns. J Pathol 2005; 195(1): 41–52CrossRefGoogle Scholar
  108. 108.
    Takahashi T, Shivapurkar N, Reddy J, et al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin Cancer Res 2004; 10(9): 2928–35PubMedCrossRefGoogle Scholar
  109. 109.
    Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 2003; 109(1): 80–8PubMedCrossRefGoogle Scholar
  110. 110.
    Wagner PD, Maruvada P, Srivastava S. Molecular diagnostics: a new frontier in cancer prevention. Expert Rev Mol Diagn 2004; 4(4): 503–11PubMedCrossRefGoogle Scholar
  111. 111.
    Strong LC. Genetic concept for the origin of cancer: historical review. Ann N Y Acad Sci 1958 Sep 30; 71(6): 810–38PubMedCrossRefGoogle Scholar
  112. 112.
    Bittner JJ. Genetic aspect of cancer research. Am J Med 1950 Feb; 8(2): 218–28PubMedCrossRefGoogle Scholar
  113. 113.
    Hu Z, Miao X, Ma H, et al. A common polymorphism in the 3′ UTR of cyclooxygenase 2/prostaglandin synthase 2 gene and risk of lung cancer in a Chinese population. Lung Cancer 2005; 48(1): 11–7PubMedCrossRefGoogle Scholar
  114. 114.
    Shen M, Berndt SI, Rothman N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer 2005 Sep 20; 116(5): 768–73PubMedCrossRefGoogle Scholar
  115. 115.
    Tahara T, Inoue N, Hisamatsu T, et al. Clinical significance of microsatellite instability in the inflamed mucosa for the prediction of colonic neoplasms in patients with ulcerative colitis. J Gastroenterol Hepatol 2005; 20(5): 710–5PubMedCrossRefGoogle Scholar
  116. 116.
    Kohonen-Corish MR, Daniel JJ, Chan C, et al. Low microsatellite instability is associated with poor prognosis in stage C colon cancer. J Clin Oncol 2005; 23(10): 2318–24PubMedCrossRefGoogle Scholar
  117. 117.
    Velayos FS, Lee SH, Qiu H, et al. The mechanism of microsatellite instability is different in synchronous and metachronous colorectal cancer. J Gastrointest Surg 2005; 9(3): 329–35PubMedCrossRefGoogle Scholar
  118. 118.
    Ha PK, Pilkington TA, Westra WH, et al. Progression of microsatellite instability from premalignant lesions to tumors of the head and neck. Int J Cancer 2002; 102(6): 615–7PubMedCrossRefGoogle Scholar
  119. 119.
    Janatova M, Pohlreich P. Microsatellite markers in breast cancer studies. Prague Med Rep 2004; 105(2): 111–8PubMedGoogle Scholar
  120. 120.
    Goodfellow PJ. MSI in endometrial cancer: prevalence and clinical applications. Int J Gynecol Cancer 2005; 15(2): 402–3CrossRefGoogle Scholar
  121. 121.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of micro-satellite instability in colorectal cancer. Cancer Res 1998 Nov 15; 58(22): 5248–57PubMedGoogle Scholar
  122. 122.
    Saetta AA, Goudopoulou A, Korkolopoulou P, et al. Mononucleotide markers of microsatellite instability in carcinomas of the urinary bladder. Eur J Surg Oncol 2004 Sep; 30(7): 796–803PubMedCrossRefGoogle Scholar
  123. 123.
    Ha PK, Pilkington TA, Westra WH, et al. Progression of microsatellite instability from premalignant lesions to tumors of the head and neck. Int J Cancer 2002 Dec 20; 102(6): 615–7PubMedCrossRefGoogle Scholar
  124. 124.
    Yonekura Y, Yamamoto D, Okugawa H, et al. Loss of heterozygosity in ductal lavage for breast tumor and the contralateral breast. Oncol Rep 2005; 13(4): 739–43PubMedGoogle Scholar
  125. 125.
    Chang SC, Lin JK, Lin TC, et al. Loss of heterozygosity: an independent prognostic factor of colorectal cancer. World J Gastroenterol 2005; 11(6): 778–84PubMedGoogle Scholar
  126. 126.
    Cheung TH, Lo KW, Yim SF, et al. Clinicopathologic significance of loss of heterozygosity on chromosome 1 in cervical cancer. Gynecol Oncol 2005; 96(2): 510–5PubMedCrossRefGoogle Scholar
  127. 127.
    Li YL, Tian Z, Wu DY, et al. Loss of heterozygosity on 10q23.3 and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions. World J Gastroenterol 2005; 11(2): 285–8PubMedGoogle Scholar
  128. 128.
    Rogowski M, Walenczak I, Pepinski W, et al. Loss of heterozygosity in laryngeal cancer. Rocz Akad Med Bialymst 2004; 49: 262–4PubMedGoogle Scholar
  129. 129.
    Pan H, Califano J, Ponte JF, et al. Loss of heterozygosity patterns provide fingerprints for genetic heterogeneity in multistep cancer progression of tobacco smoke-induced non-small cell lung cancer. Cancer Res 2005; 65(5): 1664–9PubMedCrossRefGoogle Scholar
  130. 130.
    Vega F, Medeiros LJ. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch Pathol Lab Med 2003 Sep; 127(9): 1148–60PubMedGoogle Scholar
  131. 131.
    Huntly BJ, Bench A, Green AR. Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood 2003 Aug 15; 102(4): 1160–8PubMedCrossRefGoogle Scholar
  132. 132.
    Garcia-Olmo DC, Gutierrez-Gonzalez L, Ruiz-Piqueras R, et al. Detection of circulating tumor cells and of tumor DNA in plasma during tumor progression in rats. Cancer Lett 2005; 217(1): 115–23PubMedCrossRefGoogle Scholar
  133. 133.
    Z’Graggen K, Centeno BA, Fernandez-del Castillo C, et al. Biological implications of tumor cells in blood and bone marrow of pancreatic cancer patients. Surgery 2001; 129(5): 537–46PubMedCrossRefGoogle Scholar
  134. 134.
    Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease. Gene 1999; 238(1): 211–30PubMedCrossRefGoogle Scholar
  135. 135.
    Petros JA, Baumann AK, Ruiz-Pesini E, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 2005; 102(3): 719–24PubMedCrossRefGoogle Scholar
  136. 136.
    Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutat Res 2002; 509(1-2): 127–51PubMedCrossRefGoogle Scholar
  137. 137.
    Jeronimo C, Nomoto S, Caballero OL, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 2001; 20(37): 5195–8PubMedCrossRefGoogle Scholar
  138. 138.
    Fliss MS, Usadel H, Caballero OL, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 2000; 287(5460): 2017–9PubMedCrossRefGoogle Scholar
  139. 139.
    Hibi K, Nakayama H, Yamazaki T, et al. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer 2001; 94(3): 429–31PubMedCrossRefGoogle Scholar
  140. 140.
    Hibi K, Nakayama H, Yamazaki T, et al. Mitochondrial DNA alteration in esophageal cancer. Int J Cancer 2001; 92(3): 319–21PubMedCrossRefGoogle Scholar
  141. 141.
    Kumimoto H, Yamane Y, Nishimoto Y, et al. Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer 2004; 108(2): 228–31PubMedCrossRefGoogle Scholar
  142. 142.
    Verma M, Kagan J, Sidransky D, et al. Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 2003; 3(10): 789–95PubMedCrossRefGoogle Scholar
  143. 143.
    Lam JS, Belldegrun AS, Figlin RA. Tissue array-based predictions of pathobiology, prognosis, and response to treatment for renal cell carcinoma therapy. Clin Cancer Res 2004; 10 (18 Pt 2): 6304S–9SPubMedCrossRefGoogle Scholar
  144. 144.
    Stoecklein NH, Luebke AM, Erbersdobler A, et al. Copy number of chromosome 17 but not HER2 amplification predicts clinical outcome of patients with pancreatic ductal adenocarcinoma. J Clin Oncol 2004; 22(23): 4737–45PubMedCrossRefGoogle Scholar
  145. 145.
    Hake SB, Xiao A, Allis CD. Linking the epigenetic sllanguage’ of covalent histone modifications to cancer. Br J Cancer 2004; 90(4): 761–9PubMedCrossRefGoogle Scholar
  146. 146.
    Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–63PubMedCrossRefGoogle Scholar
  147. 147.
    Moggs JG, Goodman JI, Trosko JE, et al. Epigenetics and cancer: implications for drug discovery and safety assessment. Toxicol Appl Pharmacol 2004; 196(3): 422–30PubMedCrossRefGoogle Scholar
  148. 148.
    Eads CA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 2001; 61(8): 3410–8PubMedGoogle Scholar
  149. 149.
    Widschwendter A, Gattringer C, Ivarsson L, et al. Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res 2004; 10(10): 3396–400PubMedCrossRefGoogle Scholar
  150. 150.
    Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 2000; 60(21): 5954–8PubMedGoogle Scholar
  151. 151.
    Verma M, Dunn BK, Ross S, et al. Early detection and risk assessment: proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention. Ann N Y Acad Sci 2003; 983: 298–319PubMedCrossRefGoogle Scholar
  152. 152.
    Nishigaki M, Aoyagi K, Danjoh I, et al. Discovery of aberrant expression of RRAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 2005 Mar 15; 65(6): 2115–24PubMedCrossRefGoogle Scholar
  153. 153.
    Guo J, Burger M, Nimmrich I, et al. Differential DNA methylation of gene promoters in small B-cell lymphomas. Am J Clin Pathol 2005 Sep; 124(3): 430–9PubMedCrossRefGoogle Scholar
  154. 154.
    Hanada M, Delia D, Aiello A, et al. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993 Sep 15; 82(6): 1820–8PubMedGoogle Scholar
  155. 155.
    Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 2004; 23(1-2): 29–39PubMedCrossRefGoogle Scholar
  156. 156.
    Youssef EM, Estecio MR, Issa JP. Methylation and regulation of expression of different retinoic acid receptor beta isoforms in human colon cancer. Cancer Biol Ther 2004; 3(1): 82–6PubMedCrossRefGoogle Scholar
  157. 157.
    Issa JP, Ahuja N, Toyota M, et al. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 2001; 61(9): 3573–7PubMedGoogle Scholar
  158. 158.
    Senda T, Shimomura A, Iizuka-Kogo A. Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 2005 Sep; 80(3): 121–31PubMedCrossRefGoogle Scholar
  159. 159.
    Grady WM. Molecular basis for subdividing hereditary colon cancer? Gut 2005 Dec; 54(12): 1676–8PubMedCrossRefGoogle Scholar
  160. 160.
    Stock M, Otto F. Gene deregulation in gastric cancer. Gene 2005 Oct 24; 360(1): 1–19PubMedCrossRefGoogle Scholar
  161. 161.
    Mund C, Beier V, Bewerunge P, et al. Array-based analysis of genomic DNA methylation patterns of the tumour suppressor gene p16INK4A promoter in colon carcinoma cell lines. Nucleic Acids Res 2005; 33(8): e73PubMedCrossRefGoogle Scholar
  162. 162.
    Jubb AM, Bell SM, Quirke P. Methylation and colorectal cancer. J Pathol 2005; 195(1): 111–34CrossRefGoogle Scholar
  163. 163.
    Issa JP. The epigenetics of colorectal cancer. Ann N Y Acad Sci 2000; 910: 140–53PubMedCrossRefGoogle Scholar
  164. 164.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of micro-satellite instability in colorectal cancer. Cancer Res 1998; 58(22): 5248–57PubMedGoogle Scholar
  165. 165.
    Yeager TR, De Vries S, Jarrard DF, et al. Overcoming cellular senescence in human cancer pathogenesis. Genes Dev 1998; 12(2): 163–74PubMedCrossRefGoogle Scholar
  166. 166.
    Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995; 268(5215): 1336–8PubMedCrossRefGoogle Scholar
  167. 167.
    Shanahan F. Review article: colitis-associated cancer: time for new strategies. Aliment Pharmacol Ther 2003; 18Suppl. 2: 6–9PubMedCrossRefGoogle Scholar
  168. 168.
    Munkholm P. Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 2003; 18Suppl. 2: 1–5PubMedCrossRefGoogle Scholar
  169. 169.
    Croog VJ, Ullman TA, Itzkowitz SH. Chemoprevention of colorectal cancer in ulcerative colitis. Int J Colorectal Dis 2003; 18(5): 392–400PubMedCrossRefGoogle Scholar
  170. 170.
    Vera A, Gunson BK, Ussatoff V, et al. Colorectal cancer in patients with inflammatory bowel disease after liver transplantation for primary sclerosing cholangitis. Transplantation 2003; 75(12): 1983–8PubMedCrossRefGoogle Scholar
  171. 171.
    Kiesslich R, Fritsch J, Holtmann M, et al. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 2003; 124(4): 880–8PubMedCrossRefGoogle Scholar
  172. 172.
    Sato F, Harpaz N, Shibata D, et al. Hypermethylation of the pl4 (ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res 2002; 62(4): 1148–51PubMedGoogle Scholar
  173. 173.
    Jeronimo C, Varzim G, Henrique R, et al. I105V polymorphism and promoter methylation of the GSTP1 gene in prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2002; 11(5): 445–50PubMedGoogle Scholar
  174. 174.
    Jeronimo C, Usadel H, Henrique R, et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 2001; 93(22): 1747–52PubMedCrossRefGoogle Scholar
  175. 175.
    Gonzalgo ML, Nakayama M, Lee SM, et al. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis. Urology 2004; 63(2): 414–8PubMedCrossRefGoogle Scholar
  176. 176.
    Nakayama M, Gonzalgo ML, Yegnasubramanian S, et al. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 2004; 91(3): 540–52PubMedCrossRefGoogle Scholar
  177. 177.
    Enzinger PC. Should people with Barrett’s esophagus, who are at risk for cancer of the esophagus, avoid alcohol? [letter]. Health News 2004; 10(6): 16PubMedGoogle Scholar
  178. 178.
    Katz PO. Management of the patient with Barrett’s esophagus: a continuing dilemma for the clinician. Rev Gastroenterol Disord 2004; 4(2): 49–59PubMedGoogle Scholar
  179. 179.
    Shalauta MD, Saad R. Barrett’s esophagus. Am Fam Physician 2004; 69(9): 2113–8PubMedGoogle Scholar
  180. 180.
    De Vault KR. Screening for Barrett’s esophagus. Am Fam Physician 2004; 69(9): 2061–3Google Scholar
  181. 181.
    Metzger R, Schneider PM, Warnecke-Eberz U, et al. Molecular biology of esophageal cancer. Onkologie 2004; 27(2): 200–6PubMedCrossRefGoogle Scholar
  182. 182.
    Xing EP, Nie Y, Wang LD, et al. Aberrant methylation of p16INK4a and deletion of p15INK4b are frequent events in human esophageal cancer in Linxian, China. Carcinogenesis 1999; 20(1): 77–84PubMedCrossRefGoogle Scholar
  183. 183.
    Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003; 3(4): 253–66PubMedCrossRefGoogle Scholar
  184. 184.
    Laird CD, Pleasant ND, Clark AD, et al. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc Natl Acad Sci U S A 2004; 101(1): 204–9PubMedCrossRefGoogle Scholar
  185. 185.
    Toyota M, Shen L, Ohe-Toyota M, et al. Aberrant methylation of the Cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res 2000; 60(15): 4044–8PubMedGoogle Scholar
  186. 186.
    Akhtar M, Cheng Y, Magno RM, et al. Promoter methylation regulates Helicobacter pylori-stimulated cyclooxygenase-2 expression in gastric epithelial cells. Cancer Res 2001; 61(6): 2399–403PubMedGoogle Scholar
  187. 187.
    Belinsky SA, Klinge DM, Dekker JD, et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res 2005 Sep 15; 11: 6505–11PubMedCrossRefGoogle Scholar
  188. 188.
    Verma M. Pancreatic cancer epidemiology. Technol Cancer Res Treat 2005; 4(3): 295–302PubMedGoogle Scholar
  189. 189.
    Hagihara A, Miyamoto K, Furuta J, et al. Identification of 27 5′ CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene 2004; 23(53): 8705–10PubMedCrossRefGoogle Scholar
  190. 190.
    Xu S, Furukawa T, Kanai N, et al. Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J Hum Genet 2005; 50(4): 159–67PubMedCrossRefGoogle Scholar
  191. 191.
    Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004; 96(6): 434–42PubMedCrossRefGoogle Scholar
  192. 192.
    Belshaw NJ, Elliott GO, Williams EA, et al. Use of DNA from human stools to detect aberrant CpG island methylation of genes implicated in colorectal cancer. Cancer Epidemiol Biomarkers Prev 2004; 13(9): 1495–501PubMedGoogle Scholar
  193. 193.
    Genereux DP, Miner BE, Bergstrom CT, et al. A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Proc Natl Acad Sci U S A 2005; 102(16): 5802–7PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Mukesh Verma
    • 1
  • Daniela Seminara
    • 2
  • Fernando J. Arena
    • 2
  • Christy John
    • 3
  • Kumiko Iwamoto
    • 1
  • Virginia Hartmuller
    • 1
  1. 1.Analytic Epidemiology Research Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population SciencesNational Cancer InstituteRockvilleUSA
  2. 2.Clinical Epidemiology and Genetics Research Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population SciencesNational Cancer InstituteRockvilleUSA
  3. 3.Food and Drug AdministrationRockvilleUSA

Personalised recommendations