Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In Vitro Testing for the Diagnosis of Anticonvulsant Hypersensitivity Syndrome

A Systematic Review


Anticonvulsant hypersensitivity syndrome (AHS) is a rare and potentially fatal reaction that develops in susceptible patients following exposure to certain drugs, including aromatic anticonvulsants. Because of its ill-defined clinical picture and resemblance to other diseases, the diagnosis of AHS is often difficult and requires a safe and reliable diagnostic test. Other than systemic rechallenge, which is not always ethically permissible and has its own limitations, no reliable diagnostic test is available for this type of disorder. This systematic review attempts to evaluate the usefulness of the available in vitro tests in the diagnosis of AHS — namely, the lymphocyte transformation test (LTT) and the lymphocyte toxicity assay (LTA) — and to examine the different technical aspects of these tests that may contribute to their performance. We included studies in which aromatic anticonvulsant drugs were the likely causes of the hypersensitivity reaction and either the LTT or the LTA was used to aid the diagnosis of AHS. Analysis of original publications from 1950 to the last week of March 2009 and cited in PubMed, MEDLINE and EMBASE has revealed that there are numerous factors affecting the final result of the test, including the following: the timing of the test after exposure; the clinical manifestation of the reactions; the specific drug; and the test procedure and read-out system. In vitro diagnostic tests have the advantage over in vivo tests of being safe to use; however, in vitro tests for the diagnosis of AHS are not well standardized and their sensitivity and specificity are not yet determined. From the reviewed literature, the sensitivity of the LTT and the LTA seem to be around 70% and 90%, respectively, and the positive and negative predictive values of the tests in highly imputable cases are quite high. However, the lack of a gold-standard diagnostic test to prove drug culpability, along with the paucity of large-scale studies, precludes accurate determination of the epidemiological characteristics of these tests. It appears that without further understanding of the mechanisms underlying the pathophysiology of AHS, and how specific drugs and metabolites differentially affect these mechanisms, the development of more reliable tools for AHS diagnosis will be compromised. Consequently, in the absence of further research, the predictability of these tests will remain questionable and they are unlikely to be utilized on a large scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Table II
Table III


  1. 1.

    Shear NH, Spielberg SP. Anticonvulsant hypersensitivity syndrome: in vitro assessment of risk. J Clin Invest 1988 Dec; 82(6): 1826–32

  2. 2.

    Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia 2007 Jul; 48(7): 1223–44

  3. 3.

    Peyriere H, Dereure O, Breton H, et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol 2006 Aug; 155(2): 422–8

  4. 4.

    Shapiro LE, Shear NH. Mechanisms of drug reactions: the metabolic track. Semin Cutan Med Surg 1996 Dec; 15(4): 217–27

  5. 5.

    Spielberg SP, Gordon GB, Blake DA, et al. Anticonvulsant toxicity in vitro: possible role of arene oxides. J Pharmacol Exp Ther 1981 May; 217(2): 386–9

  6. 6.

    Tennis P, Stern RS. Risk of serious cutaneous disorders after initiation of use of phenytoin, carbamazepine, or sodium valproate: a record linkage study. Neurology 1997 Aug; 49(2): 542–6

  7. 7.

    Primeau MN, Adkinson Jr NF. Recent advances in the diagnosis of drug allergy. Curr Opin Allergy Clin Immunol 2001 Aug; 1(4): 337–41

  8. 8.

    Romano A, Demoly P. Recent advances in the diagnosis of drug allergy. Curr Opin Allergy Clin Immunol 2007 Aug; 7(4): 299–303

  9. 9.

    Pourpak Z, Fazlollahi MR, Fattahi F. Understanding adverse drug reactions and drug allergies: principles, diagnosis and treatment aspects. Recent Pat Inflamm Allergy Drug Discov 2008; 2(1): 24–46

  10. 10.

    Elzagallaai AA, Knowles SR, Rieder MJ, et al. Patch testing for the diagnosis of anticonvulsant hypersensitivity syndrome: a systematic review. Drug Saf 2009; 32(5): 391–408

  11. 11.

    Naranjo CA, Shear NH, Lanctot KL. Advances in the diagnosis of adverse drug reactions. J Clin Pharmacol 1992 Oct; 32(10): 897–904

  12. 12.

    Beeler A, Pichler WJ. In vitro tests of T-cell-mediated drug hypersensitivity. In: Pichler WJ, editor. Drug hypersensitivity. Basel: Karger, 2007: 380–90

  13. 13.

    Lan CC, Wu CS, Tsai PC, et al. Diagnostic role of soluble fas ligand secretion by peripheral blood mononuclear cells from patients with previous drug-induced blistering disease: a pilot study. Acta Derm Venereol 2006; 86(3): 215–8

  14. 14.

    Wu Y, Sanderson JP, Farrell J, et al. Activation of T cells by carbamazepine and carbamazepine metabolites. J Allergy Clin Immunol 2006 Jul; 118(1): 233–41

  15. 15.

    Beeler A, Engler O, Gerber BO, et al. Long-lasting reactivity and high frequency of drug-specific T cells after severe systemic drug hypersensitivity reactions. J Allergy Clin Immunol 2006 Feb; 117(2): 455–62

  16. 16.

    Pentycross CR. Technique for lymphocyte transformation. J Clin Pathol 1968 Mar; 21(2): 175–8

  17. 17.

    Böyum A. Isolation of leucocytes from human blood: further observations. Methylcellulose, dextran, and Ficoll as erythrocyte aggregating agents. Scand J Clin Lab Invest Suppl 1968; 97: 31–50

  18. 18.

    Rigas DA, Osgood EE. Purification and properties of the phytohemagglutinin of Phaseolus vulgaris. J Biol Chem 1955 Feb; 212(2): 607–15

  19. 19.

    Minor AH, Burnett L. A method for obtaining living leukocytes from human peripheral blood by acceleration of erythrocyte sedimentation. Blood 1948 Jul; 3(7): 799–802

  20. 20.

    Li JG, Osgood EE. A method for the rapid separation of leukocytes and nucleated erythrocytes from blood of marrow with a phytohemagglutinin from red beans (Phaseolus vulgaris). Blood 1949 May; 4(5): 670–5

  21. 21.

    Nowell PC. Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 1960 May; 20: 462–6

  22. 22.

    Pearmain G, Lycette RR, Fitzgerald PH. Tuberculin-induced mitosis in peripheral blood leucocytes. Lancet 1963 Mar 23; 1(7282): 637–8

  23. 23.

    Holland P, Mauer AM. Drug-induced in-vitro stimulation of peripheral lymphocytes. Lancet 1964 Jun 20; 1(7347): 1368–9

  24. 24.

    Caron GA, Sarkany I. Lymphoblast transformation in sulphonamide sensitivity. Br J Dermatol 1965 Nov; 77(11): 556–60

  25. 25.

    Vischer TL. Lymphocyte cultures in drug hypersensitivity. Lancet 1966 Aug 27; 2(7461): 467–9

  26. 26.

    Leguit Jr P, Meinesz A, Zeijlemaker WP, et al. Immunological studies in burn patients: I. Lymphocyte transformation in vitro. Int Arch Allergy Appl Immunol 1973; 44(1): 101–21

  27. 27.

    Schellekens PT, Eijsvoogel VP. Lymphocyte transformation in vitro: I. Tissue culture conditions and quantitative measurements. Clin Exp Immunol 1968 Jul; 3(6): 571–84

  28. 28.

    Schellekens PT, Eijsvoogel VP. Lymphocyte transformation in vitro: III. Mechanism of stimulation in the mixed lymphocyte culture. Clin Exp Immunol 1970 Aug; 7(2): 229–39

  29. 29.

    Schellekens PT, Eijsvoogel VP. Lymphocyte transformation in vitro: IV. Recruitment in antigen-stimulated cultures. Clin Exp Immunol 1971 Feb; 8(2): 187–94

  30. 30.

    Schellekens PT, Vriesendorp B, Eijsvoogel VP, et al. Lymphocyte transformation in vitro: II. Mixed lymphocyte culture in relation to leucocyte antigens. Clin Exp Immunol 1970 Feb; 6(2): 241–54

  31. 31.

    Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004 Aug; 59(8): 809–20

  32. 32.

    Sachs B, Erdmann S, Malte Baron J, et al. Determination of interleukin-5 secretion from drug-specific activated ex vivo peripheral blood mononuclear cells as a test system for the in vitro detection of drug sensitization. Clin Exp Allergy 2002 May; 32(5): 736–44

  33. 33.

    Turcanu V, Maleki SJ, Lack G. Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J Clin Invest 2003 Apr; 111(7): 1065–72

  34. 34.

    Okumura A, Tsuge I, Kubota T, et al. Phenytoin desensitization monitored by antigen specific T cell response using carboxyfluorescein succinimidyl ester dilution assay. Eur J Paediatr Neurol 2007 Nov; 11(6): 385–8

  35. 35.

    Lyons AB. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 2000 Sep 21; 243(1–2): 147–54

  36. 36.

    Fulcher D, Wong S. Carboxyfluorescein succinimidyl ester-based pro-liferative assays for assessment of T cell function in the diagnostic laboratory. Immunol Cell Biol 1999 Dec; 77(6): 559–64

  37. 37.

    Nyfeler B, Pichler WJ. The lymphocyte transformation test for the diagnosis of drug allergy: sensitivity and specificity. Clin Exp Allergy 1997 Feb; 27(2): 175–81

  38. 38.

    Spielberg SP. In vitro assessment of pharmacogenetic susceptibility to toxic drug metabolites in humans. Fed Proc 1984 May 15; 43(8): 2308–13

  39. 39.

    Spielberg SP. In vitro analysis of idiosyncratic drug reactions. Clin Biochem 1986 Apr; 19(2): 142–4

  40. 40.

    Spielberg SP, Gordon GB, Blake DA, et al. Predisposition to phenytoin hepatotoxicity assessed in vitro. N Engl J Med 1981 Sep 24; 305(13): 722–7

  41. 41.

    Spielberg SP. Acetaminophen toxicity in human lymphocytes in vitro. J Pharmacol Exp Ther 1980 May; 213(2): 395–8

  42. 42.

    Knowles SR, Uetrecht J, Shear NH. Idiosyncratic drug reactions: the reactive metabolite syndromes. Lancet 2000 Nov 4; 356(9241): 1587–91

  43. 43.

    Uetrecht J. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol 2007; 47: 513–39

  44. 44.

    Uetrecht J. Idiosyncratic drug reactions: past, present, and future. Chem Res Toxicol 2008 Jan; 21 (1): 84-92

  45. 45.

    Kupfer A, Brilis GM, Watson JT, et al. A major pathway of mephenytoin metabolism in man: aromatic hydroxylation to p-hydroxymephenytoin. Drug Metab Dispos 1980 Jan-Feb; 8(1): 1–4

  46. 46.

    Lertratanangkoon K, Horning MG. Metabolism of carbamazepine. Drug Metab Dispos 1982 Jan–Feb; 10(1): 1–10

  47. 47.

    Karande S, Gogtay NJ, Kanchan S, et al. Anticonvulsant hypersensitivity syndrome to lamotrigine confirmed by lymphocyte stimulation in vitro. Indian J Med Sci 2006 Feb; 60(2): 59–63

  48. 48.

    Aberer W. Drug hypersensitivities: the need for standardization. Eur Ann Allergy Clin Immunol 2005 Jun; 37(6): 219–22

  49. 49.

    Wolkenstein P, Charue D, Laurent P, et al. Metabolic predisposition to cutaneous adverse drug reactions: role in toxic epidermal necrolysis caused by sulfonamides and anticonvulsants. Arch Dermatol 1995 May; 131(5): 544–51

  50. 50.

    Hari Y, Frutig-Schnyder K, Hurni M, et al. T cell involvement in cutaneous drug eruptions. Clin Exp Allergy 2001 Sep; 31(9): 1398–408

  51. 51.

    Naisbitt DJ, Farrell J, Wong G, et al. Characterization of drug-specific T cells in lamotrigine hypersensitivity. J Allergy Clin Immunol 2003 Jun; 111(6): 1393–403

  52. 52.

    Farrell J, Naisbitt DJ, Drummond NS, et al. Characterization of sulfamethoxazole and sulfamethoxazole metabolite-specific T-cell responses in animals and humans. J Pharmacol Exp Ther 2003 Jul; 306(1): 229–37

  53. 53.

    Naisbitt DJ, Britschgi M, Wong G, et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol 2003 Mar; 63(3): 732–41

  54. 54.

    Berg PA, Becker EW. The lymphocyte transformation test: a debated method for the evaluation of drug allergic hepatic injury. J Hepatol 1995 Jan; 22(1): 115–8

  55. 55.

    Beeler A, Zaccaria L, Kawabata T, et al. CD69 upregulation on T cells as an in vitro marker for delayed-type drug hypersensitivity. Allergy 2008 Feb; 63(2): 181–8

  56. 56.

    Kano Y, Hirahara K, Mitsuyama Y, et al. Utility of the lymphocyte transformation test in the diagnosis of drug sensitivity: dependence on its timing and the type of drug eruption. Allergy 2007 Dec; 62(12): 1439–44

  57. 57.

    Tsuge I, Okumura A, Kondo Y, et al. Allergen-specific T-cell response in patients with phenytoin hypersensitivity: simultaneous analysis of proliferation and cytokine production by carboxyfluorescein succinimidyl ester (CFSE) dilution assay. Allergol Int 2007 Jun; 56(2): 149–55

  58. 58.

    Romano A, Pettinato R, Andriolo M, et al. Hypersensitivity to aromatic anticonvulsants: in vivo and in vitro cross-reactivity studies. Curr Pharm Des 2006; 12(26): 3373–81

  59. 59.

    Gex-Collet C, Helbling A, Pichler WJ. Multiple drug hypersensitivity: proof of multiple drug hypersensitivity by patch and lymphocyte transformation tests. J Investig Allergol Clin Immunol 2005; 15(4): 293–6

  60. 60.

    Aihara Y, Ito SI, Kobayashi Y, et al. Carbamazepine-induced hypersensitivity syndrome associated with transient hypogammaglobulinaemia and reactivation of human herpesvirus 6 infection demonstrated by real-time quantitative polymerase chain reaction. Br J Dermatol 2003 Jul; 149(1): 165–9

  61. 61.

    Neukomm CB, Yawalkar N, Helbling A, et al. T-cell reactions to drugs in distinct clinical manifestations of drug allergy. J Investig Allergol Clin Immunol 2001; 11(4): 275–84

  62. 62.

    Mutoh K, Hidaka Y, Hirose Y, et al. Possible induction of systemic lupus erythematosus by zonisamide. Pediatr Neurol 2001 Oct; 25(4): 340–3

  63. 63.

    Troger U, Brandt W, Rose W. Development of a pulmonary phenytoin-associated hypersensitivity reaction despite concomitant dexamethasone and prednisolone administration. Int J Clin Pharmacol Ther 2000 Sep; 38(9): 452–6

  64. 64.

    Troger U, Brandt W, Rose W. A very early onset of respiratory failure due to phenytoin-associated hypersensitivity syndrome and concomitant glucocorticoid administration [letter]. Intensive Care Med 2000 Feb; 26(2): 258

  65. 65.

    Chinen J, Piecuch S. Anticonvulsant hypersensitivity syndrome versus Kawasaki disease: a challenging clinical diagnosis with therapeutic implications. Clin Pediatr (Phila) 2000 Feb; 39(2): 109–11

  66. 66.

    Schaub N, Bircher AJ. Severe hypersensitivity syndrome to lamotrigine confirmed by lymphocyte stimulation in vitro. Allergy 2000 Feb; 55(2): 191–3

  67. 67.

    Brown KL, Henderson DC, Nadel S, et al. Carbamazepine hypersensitivity and the use of lymphocyte proliferation responses. Dev Med Child Neurol 1999 Apr; 41(4): 267–9

  68. 68.

    Sachs B, Ronnau AC, von Schmiedeberg S, et al. Lamotrigine-induced Stevens-Johnson syndrome: demonstration of specific lymphocyte reactivity in vitro. Dermatology 1997; 195(1): 60–4

  69. 69.

    Troost RJ, Van Parys JA, Hooijkaas H, et al. Allergy to carbamazepine: parallel in vivo and in vitro detection. Epilepsia 1996 Nov; 37(11): 1093–9

  70. 70.

    Okuyama R, Ichinohasama R, Tagami H. Carbamazepine induced erythroderma with systemic lymphadenopathy. J Dermatol 1996 Jul; 23(7): 489–94

  71. 71.

    Mauri-Hellweg D, Bettens F, Mauri D, et al. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol 1995 Jul 1; 155(1): 462–72

  72. 72.

    Kimura M, Yoshino K, Maeoka Y, et al. Carbamazepine-induced throm-bocytopenia and carbamazepine-10,11-epoxide: a case report. Psychiatry Clin Neurosci 1995 Mar; 49(1): 69–70

  73. 73.

    Friedmann PS, Strickland I, Pirmohamed M, et al. Investigation of mechanisms in toxic epidermal necrolysis induced by carbamazepine. Arch Dermatol 1994 May; 130(5): 598–604

  74. 74.

    Maria VA, Pinto L, Victorino RM. Lymphocyte reactivity to ex-vivo drug antigens in drug-induced hepatitis. J Hepatol 1994 Aug; 21(2): 151–8

  75. 75.

    Takahashi N, Aizawa H, Takata S, et al. Acute interstitial pneumonitis induced by carbamazepine. Eur Respir J 1993 Oct; 6(9): 1409–11

  76. 76.

    Danno K, Kume M, Ohta M, et al. Erythroderma with generalized lymphadenopathy induced by phenytoin. J Dermatol 1989 Oct; 16(5): 392–6

  77. 77.

    Zakrzewska JM, Ivanyi L. In vitro lymphocyte proliferation by carbamazepine, carbamazepine-10, 11-epoxide, and oxcarbazepine in the diagnosis of drug-induced hypersensitivity. J Allergy Clin Immunol 1988 Jul; 82(1): 110–5

  78. 78.

    De Swert LF, Ceuppens JL, Teuwen D, et al. Acute interstitial pneumonitis and carbamazepine therapy. Acta Paediatr Scand 1984 Mar; 73(2): 285–8

  79. 79.

    Houwerzijl J, De Gast GC, Nater JP, et al. Lymphocyte-stimulation tests and patch tests to carbamazepine hypersensitivity. Clin Exp Immunol 1977 Aug; 29(2): 272–7

  80. 80.

    Cullinan SA, Bower GC. Acute pulmonary hypersensitivity to carbamazepine. Chest 1975 Oct; 68(4): 580–1

  81. 81.

    Virolainen M. Blast transformation in vivo and in vitro in carbamazepin hypersensitivity. Clin Exp Immunol 1971 Sep; 9(3): 429–35

  82. 82.

    Luque I, Leyva L, Jose Torres M, et al. In vitro T-cell responses to beta-lactam drugs in immediate and nonimmediate allergic reactions. Allergy 2001 Jul; 56(7): 611–8

  83. 83.

    Shepherd GM. Hypersensitivity reactions to drugs: evaluation and management. Mt Sinai J Med 2003 Mar; 70(2): 113–25

  84. 84.

    Sharma VK, Vatve M, Sawhney IM, et al. Clinical spectrum of drug rashes due to antiepileptics. J Assoc Physicians India 1998 Jul; 46(7): 595–7

  85. 85.

    Kuechler PC, Britschgi M, Schmid S, et al. Cytotoxic mechanisms in different forms of T-cell-mediated drug allergies. Allergy 2004 Jun; 59(6): 613–22

  86. 86.

    Posadas SJ, Pichler WJ. Delayed drug hypersensitivity reactions-new concepts. Clin Exp Allergy 2007 Jul; 37(7): 989–99

  87. 87.

    Pichler WJ, Beeler A, Keller M, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int 2006 Mar; 55(1): 17–25

  88. 88.

    Gerber BO, Pichler WJ. Noncovalent interactions of drugs with immune receptors may mediate drug-induced hypersensitivity reactions. AAPS J 2006; 8(1): E160–5

  89. 89.

    Gerber BO, Pichler WJ. The p-i concept: evidence and implications. In: Pichler WJ, editor. Drug hypersensitivity. Basel: Karger, 2007: 66–73

  90. 90.

    Hashizume H, Takigawa M, Tokura Y. Characterization of drug-specific T cells in phenobarbital-induced eruption. J Immunol 2002 May 15; 168(10): 5359–68

  91. 91.

    Naisbitt DJ, Pirmohamed M, Park BK. Immunological principles of T-cell-mediated adverse drug reactions in skin. Expert Opin Drug Saf 2007 Mar; 6(2): 109–24

  92. 92.

    Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med 2003 Oct 21; 139(8): 683–93

  93. 93.

    Matsuno O, Okubo T, Hiroshige S, et al. Drug-induced lymphocyte stimulation test is not useful for the diagnosis of drug-induced pneumonia. Tohoku J Exp Med 2007 May; 212(1): 49–53

  94. 94.

    Mantani N, Kogure T, Tamura J, et al. Lymphocyte transformation test for medicinal herbs yields false-positive results for first-visit patients. Clin Diagn Lab Immunol 2003 May; 10(3): 479–80

  95. 95.

    Ono E, Miyazaki E, Matsuno O, et al. Minocycline-induced acute eosino-philic pneumonia: controversial results of lymphocyte stimulation test and re-challenge test. Intern Med 2007; 46(9): 593–5

  96. 96.

    Wu Y, Farrell J, Pirmohamed M, et al. Generation and characterization of antigen-specific CD4+, CD8+, and CD4+CD8+ T-cell clones from patients with carbamazepine hypersensitivity. J Allergy Clin Immunol 2007 Apr; 119(4): 973–81

  97. 97.

    Sachs B, Erdmann S, Al-Masaoudi T, et al. In vitro drug allergy detection system incorporating human liver microsomes in chlorazepate-induced skin rash: drug-specific proliferation associated with interleukin-5 secretion. Br J Dermatol 2001 Feb; 144(2): 316–20

  98. 98.

    Merk HF. Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines. Toxicology 2005 Apr 15; 209(2): 217–20

  99. 99.

    Abe R, Shimizu T, Shibaki A, et al. Toxic epidermal necrolysis and Stevens-Johnson syndrome are induced by soluble Fas ligand. Am J Pathol 2003 May; 162(5): 1515–20

  100. 100.

    Krensky AM, Clayberger C. Granulysin: a novel host defense molecule. Am J Transplant 2005 Aug; 5(8): 1789–92

  101. 101.

    Chung WH, Hung SI, Yang JY, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med 2008 Dec; 14(12): 1343–50

  102. 102.

    Neuman MG, Malkiewicz IM, Shear NH. A novel lymphocyte toxicity assay to assess drug hypersensitivity syndromes. Clin Biochem 2000 Oct; 33(7): 517–24

  103. 103.

    Neuman MG, Shear NH, Malkiewicz IM, et al. Predicting possible zonisamide hypersensitivity syndrome. Exp Dermatol 2008 Dec; 17(12): 1045–51

  104. 104.

    Naranjo CA, Kwok MC, Lanctot KL, et al. Enhanced differential diagnosis of anticonvulsant hypersensitivity reactions by an integrated Bayesian and biochemical approach. Clin Pharmacol Ther 1994 Nov; 56(5): 564–75

  105. 105.

    Dwivedi R, Gogtay N, Kharkar V, et al. In-vitro lymphocyte toxicity to a phenytoin metabolite in phenytoin induced cutaneous adverse drug eruptions. Indian J Dermatol Venereol Leprol 2004 Jul–Aug; 70(4): 217–20

  106. 106.

    Bavdekar SB, Muranjan MN, Gogtay NJ, et al. Anticonvulsant hypersensitivity syndrome: lymphocyte toxicity assay for the confirmation of diagnosis and risk assessment. Ann Pharmacother 2004 Oct; 38(10): 1648–50

  107. 107.

    Gennis MA, Vemuri R, Burns EA, et al. Familial occurrence of hypersensitivity to phenytoin. Am J Med 1991 Dec; 91(6): 631–4

  108. 108.

    Pirmohamed M, Graham A, Roberts P, et al. Carbamazepine-hypersensitivity: assessment of clinical and in vitro chemical cross-reactivity with phenytoin and oxcarbazepine. Br J Clin Pharmacol 1991 Dec; 32(6): 741–9

  109. 109.

    Hewitt CW, Sawyer S, Beck PA, et al. A simple method for the isolation of platelet-free lymphocyte suspensions from rat whole blood. J Immunol Methods 1980; 36(3–4): 227–34

  110. 110.

    Rueda F, Marti F, Pinol G, et al. Artefactual low lymphocyte activity caused by platelet contamination in the mononuclear cell preparations. Am J Hematol 1989 Jun; 31(2): 126–7

  111. 111.

    Casale TB, Kaliner M. A rapid method for isolation of human mononuclear cells free of significant platelet contamination. J Immunol Methods 1982 Dec 30; 55(3): 347–53

  112. 112.

    Hurwitz RL, Schreinemachers D, Kersey JH. Elimination of platelets from mononuclear cell preparations using heat-killed yeast. Exp Hematol 1979 Feb; 7(2): 81–6

  113. 113.

    Lad PM, Easton J, Niedzin H, et al. A method for the preparation of mononuclear cells devoid of platelet contamination and its application to the evaluation of putative alpha-receptors in normal and asthmatic subjects. J Immunol Methods 1988 Jun 13; 110(2): 193–202

  114. 114.

    Shibusawa Y, Suzuki K, Kinoshita H, et al. Selective separation of human peripheral platelets, granulocytes and lymphocytes by surface affinity chromatography. J Chromatogr B Biomed Appl 1995 Apr 21; 666(2): 233–9

  115. 115.

    Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2006 Dec; 2(6): 875–94

  116. 116.

    Park BK, Pirmohamed M, Kitteringham NR. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol Ther 1995; 68(3): 385–424

  117. 117.

    Rieder MJ, Uetrecht J, Shear NH, et al. Diagnosis of sulfonamide hypersensitivity reactions by in-vitro “rechallenge” with hydroxylamine metabolites. Ann Intern Med 1989 Feb 15; 110(4): 286–9

  118. 118.

    Ting TY. Anticonvulsant hypersensitivity syndrome: identification and management. Curr Treat Options Neurol 2007 Jul; 9(4): 243–8

  119. 119.

    Krauss G. Current understanding of delayed anticonvulsant hypersensitivity reactions. Epilepsy Curr 2006 Mar–Apr; 6(2): 33–7

  120. 120.

    Gogtay NJ, Bavdekar SB, Kshirsagar NA. Anticonvulsant hypersensitivity syndrome: a review. Expert Opin Drug Saf 2005 May; 4(3): 571–81

  121. 121.

    Bessmertny O, Pham T. Antiepileptic hypersensitivity syndrome: clinicians beware and be aware. Curr Allergy Asthma Rep 2002 Jan; 2(1): 34–9

  122. 122.

    Quinones MD, Valero C, Salcedo M, et al. Phenytoin hypersensitivity syndrome with fatal evolution. Allergy 1999 Jan; 54(1): 83–4

  123. 123.

    Huang LY, Liao WC, Chiou CC, et al. Fatal toxic epidermal necrolysis induced by carbamazepine treatment in a patient who previously had carbamazepine-induced Stevens-Johnson syndrome. J Formos Med Assoc 2007 Dec; 106(12): 1032–7

  124. 124.

    Kwan P, Brodie MJ. Effectiveness of first antiepileptic drug. Epilepsia 2001 Oct;42(10): 1255–60

  125. 125.

    Toledano R, Gil-Nagel A. Adverse effects of antiepileptic drugs. Semin Neurol 2008 Jul; 28(3): 317–27

  126. 126.

    Devi K, George S, Criton S, et al. Carbamazepine: the commonest cause of toxic epidermal necrolysis and Stevens-Johnson syndrome. A study of 7 years. Indian J Dermatol Venereol Leprol 2005 Sep–Oct; 71(5): 325–8

  127. 127.

    Mathews KP. Clinical spectrum of allergic and pseudoallergic drug reactions. J Allergy Clin Immunol 1984 Oct; 74 (4 Pt 2): 558–66

  128. 128.

    Leeder JS. Mechanisms of idiosyncratic hypersensitivity reactions to antiepileptic drugs. Epilepsia 1998; 39Suppl. 7: S8–16

  129. 129.

    Shear NH, Spielberg SP, Grant DM, et al. Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity. Ann Intern Med 1986 Aug; 105(2): 179–84

  130. 130.

    Lanctot KL, Ghajar BM, Shear NH, et al. Improving the diagnosis of hypersensitivity reactions associated with sulfonamides. J Clin Pharmacol 1994 Dec; 34(12): 1228–33

  131. 131.

    Neuman MG, Shear NH, Malkiewicz IM, et al. Immunopathogenesis of hypersensitivity syndrome reactions to sulfonamides. Transl Res 2007 May; 149(5): 243–53

  132. 132.

    Tabatabaei AR, Thies RL, Abbott FS. Assessing the mechanism of metabolism-dependent valproic acid-induced in vitro cytotoxicity. Chem Res Toxicol 1999 Apr; 12(4): 323–30

Download references


No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Correspondence to Prof. Gideon Koren.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elzagallaai, A.A., Knowles, S.R., Rieder, M.J. et al. In Vitro Testing for the Diagnosis of Anticonvulsant Hypersensitivity Syndrome. Mol Diag Ther 13, 313–330 (2009). https://doi.org/10.1007/BF03256336

Download citation


  • Carbamazepine
  • Patch Test
  • Toxic Epidermal Necrolysis
  • Zonisamide
  • Stimulation Index