Molecular Diagnosis & Therapy

, Volume 12, Issue 1, pp 15–24 | Cite as

Rapid Diagnostics for Methicillin-Resistant Staphylococcus aureus

Current Status
Infectious Diseases

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of healthcare- and community-associated infections, and its prevalence continues to increase. These infections are associated with morbidity and excessive mortality compared with infections caused by methicillin-susceptible S. aureus (MSSA). Numerous studies have cited the increased healthcare costs associated with MRSA infections. Infection control guidelines that combine active surveillance with aggressive patient management, such as patient isolation, decontamination, and other strategies, have been shown to reduce transmission and subsequent infections. The availability of rapid molecular diagnostics has strengthened infection control programs by providing results in hours rather than days, as the time required for culture-based methods. This review summarizes the current status of rapid diagnostic methods available for MRSA detection from nasal surveillance specimens, and assays available for rapid identification of MRSA from positive blood cultures containing Gram-positive cocci in clusters. Both amplification- and probe-based assays are highlighted and discussed in detail. Future technological advances are likely to see real-time assays that combine multiple gene targets for assessment of microbial identification, virulence detection, and mechanisms of resistance beyond mecA.

Keywords

Positive Predictive Value Negative Predictive Value Positive Blood Culture Necrotizing Fasciitis Adenylate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author has received research funding from BD GeneOhm, San Diego, California, USA, and Cepheid Diagnostics, Sunnyvale, California, USA.

References

  1. 1.
    Noskin GA, Rubin RJ, Schentag JJ, et al. National trends in Staphylococcus aureus infection rates: impact on economic burden and mortality over a 6-year period (1998–2003). Clin Infect Dis 2007 Nov 1; 45(9): 1132–40PubMedCrossRefGoogle Scholar
  2. 2.
    National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004; 32: 470–85CrossRefGoogle Scholar
  3. 3.
    Kopp BJ, Nix DE, Armstrong EP. Clinical and economic analysis of methicillin-susceptible and -resistant Staphylococcus aureus infections. Ann Pharmacother 2004; 38: 1377–82PubMedCrossRefGoogle Scholar
  4. 4.
    Engemann JJ, Carmeli Y, Cosgrove SE, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 2003; 36: 592–8PubMedCrossRefGoogle Scholar
  5. 5.
    Abramson MA, Sexton DJ. Nosocomial methicillin-resistant and methicillin-susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect Control Hosp Epidemiol 1999; 20: 408–11PubMedCrossRefGoogle Scholar
  6. 6.
    Cosgrove SE, Sakoulas G, Perencevich EN, et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 2003; 36: 53–9PubMedCrossRefGoogle Scholar
  7. 7.
    Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298: 1763–71PubMedCrossRefGoogle Scholar
  8. 8.
    Tenover FC, McDougal LK, Goering RV, et al. Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. J Clin Microbiol 2006; 44: 108–18PubMedCrossRefGoogle Scholar
  9. 9.
    Lina G, Piedmont Y, Godail-Gamot F, et al. Involvement of Panton-Valentine Leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999; 29: 1129–32CrossRefGoogle Scholar
  10. 10.
    MA XX, Ito T, Tiensasitorn C, et al. Novel type of staphylococcal cassette chromosome mec identified in community acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2002; 46: 1147–52PubMedCrossRefGoogle Scholar
  11. 11.
    Naimi TS, LeDell KH, Como-Sabetti KM, et al. Comparison of community and healthcare associated methicillin-resistant Staphylococcus aureus infection. JAMA 2003; 290: 2976–84PubMedCrossRefGoogle Scholar
  12. 12.
    Muto CA, Jerinigan JA, Ostrowsky BE, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 2003; 24: 362–6PubMedCrossRefGoogle Scholar
  13. 13.
    Gastmeier P, Schwab F, Geffers C, et al. To isolate or not to isolate? Analysis of data from the German Nosocomial Infection Surveillance System regarding the placement of patients with methicillin-resistant Staphylococcus aureus in private rooms in intensive care units. Infect Control Hosp Epidemiol 2004; 25: 109–13PubMedCrossRefGoogle Scholar
  14. 14.
    Davis KA, Stewart JJ, Crouch HK, et al. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 2004; 39: 776–82PubMedCrossRefGoogle Scholar
  15. 15.
    Flayhart D, Hindler JF, Bruckner DA, et al. Multicenter evaluation of BBL CHROMagar MRSA medium for direct detection of methicillin-resistant Staphylococcus aureus from surveillance cultures of the anterior nares. J Clin Microbiol 2005; 44: 5536–40CrossRefGoogle Scholar
  16. 16.
    Safdar N, Narans L, Gordon B, et al. Comparison of culture screening methods for detection of nasal carriage of methicillin-resistant Staphylococcus aureus: a prospective study comparing 32 methods. J Clin Microbiol 2003; 41: 3163–6PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson G, Millar MR, Matthews S, et al. Evaluation of the BacLite Rapid MRSA, a rapid culture based screening test for the detection of ciprofloxacin and methicillin resistant S. aureus MRSA from screening swabs. BMC Microbiol 2006; 6: 83PubMedCrossRefGoogle Scholar
  18. 18.
    Hope WW, Morton AP, Looke DFM, et al. A PCR method for the identification of methicillin-resistant Staphylococcus aureus (MRSA) from screening swabs. Pathology 2004; 36: 265–8PubMedCrossRefGoogle Scholar
  19. 19.
    Nilsson P, Alexandersson H, Ripa T. Use of broth enrichment and real-time PCR to exclude the presence of methicillin-resistant Staphylococcus aureus in clinical samples: a sensitive screening approach. Clin Microbiol Infect 2005; 11: 1027–34PubMedCrossRefGoogle Scholar
  20. 20.
    Fang H, Hedin G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. J Clin Microbiol 2003; 41: 2894–9PubMedCrossRefGoogle Scholar
  21. 21.
    Jonas D, Speck M, Daschner FD, et al. Rapid PCR-based identification of methicillin-resistant Staphylococcus aureus from screening swabs. J Clin Microbiol 2002; 40: 1821–3PubMedCrossRefGoogle Scholar
  22. 22.
    Francois P, Pittet D, Bento M, et al. Rapid detection of methicillin-resistant Staphylococcus aureus directly from sterile or nonsterile clinical samples by a new molecular assay. J Clin Microbiol 2003; 41: 254–60PubMedCrossRefGoogle Scholar
  23. 23.
    Otsuka J, Kondoh Y, Amemiya T, et al. Development and validation of microarray-based assay for epidemiological study of MRSA. Mol Cell Probes. Epub 2007 Jun 5Google Scholar
  24. 24.
    Saunders NA, Underwood A, Kearns AM, et al. A virulence associated gene microarray: a tool for investigation of the evolution and pathogenic potential of Staphylococcus aureus. Microbiology 2004; 150: 3763–71PubMedCrossRefGoogle Scholar
  25. 25.
    Shrestha NK, Tuohy MJ, Hall GS, et al. Rapid identification of Staphylococcus aureus and the mecA gene from BacT/ALERT blood culture bottles by using the LightCycler system. J Clin Microbiol 2002; 40: 2659–61PubMedCrossRefGoogle Scholar
  26. 26.
    Thomas LC, Gidding HF, Ginn AN, et al. Development of a real-time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J Microbiol Methods 2007; 68: 296–302PubMedCrossRefGoogle Scholar
  27. 27.
    Misawa Y, Yoshida A, Saito R, et al. Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures. J Infect Chemother 2007; 13: 134–40PubMedCrossRefGoogle Scholar
  28. 28.
    Huletsky A, Giroux R, Rossbach V, et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol 2004; 42: 1875–84PubMedCrossRefGoogle Scholar
  29. 29.
    Rossney AS, Herra CM, Fitzgibbon MM, et al. Evaluation of the IDI-MRSA assay on the SmartCycler real-time PCR platform for rapid detection of MRSA from screening specimens. Eur J Clin Microbiol Infect Dis 2006; 26: 459–66CrossRefGoogle Scholar
  30. 30.
    Warren DK, Liao RS, Merz LR, et al. Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. J Clin Microbiol 2004; 42: 5578–81PubMedCrossRefGoogle Scholar
  31. 31.
    Francois P, Bento M, Renzi G, et al. Evaluation of three molecular assays for rapid identification of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2007; 45: 2011–3PubMedCrossRefGoogle Scholar
  32. 32.
    Desjardins M, Guibord C, Lalonde B, et al. Evaluation of the IDI-MRSA assay for detection of methicillin-resistant Staphylococcus aureus from nasal and rectal specimens pooled in a selective broth. J Clin Microbiol 2006; 44: 1219–23PubMedCrossRefGoogle Scholar
  33. 33.
    Bishop EJ, Grabsch EA, Ballard SA, et al. Concurrent analysis of nose and groin swab specimens by the IDI-MRSA PCR assay is comparable to analysis by individual-specimen PCR and routine culture assays for detection of colonization by methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2006; 44: 2904–8PubMedCrossRefGoogle Scholar
  34. 34.
    Oberdofer K, Pohl S, Frey M, et al. Evaluation of a single-locus, real-time polymerase chain reaction as a screening test for specific detection of methicillin-resistant Staphylococcus aureus in ICU patients. Eur J Clin Microbiol Infect Dis 2006; 25: 657–63CrossRefGoogle Scholar
  35. 35.
    Drews SJ, Willey BM, Kreiswirth N, et al. Verification of the IDI-MRSA assay for detecting methicillin-resistant Staphylococcus aureus in diverse specimen types in a core clinical laboratory setting. J Clin Microbiol 2006; 44: 3794–6PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang SX, Drews SJ, Tomassi J, et al. Comparison of two versions of the IDI-MRSA assay using charcoal swabs for prospective nasal and non-nasal surveillance samples. J Clin Microbiol 2007; 45: 2278–80PubMedCrossRefGoogle Scholar
  37. 37.
    Paule SM, Hacek DM, Kufner B, et al. Performance of the BD GeneOhm methicillin-resistant Staphylococcus aureus test before and during high-volume clinical use. J Clin Microbiol 2007; 45: 2993–8PubMedCrossRefGoogle Scholar
  38. 38.
    Mehta M, Gonzales T, Hacek D, et al. Performance of two FDA cleared PCR tests for MRSA compared to microbiological cultures [abstract no. D-880]. Inter-science Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 17–20; Chicago (IL)Google Scholar
  39. 39.
    Xpert™ MRSA [package insert]. Sunnyvale (CA): Cepheid Diagnostics, 2007: 1–16Google Scholar
  40. 40.
    Daeschlein G, Assadian O, Daxboeck F, et al. Multiplex PCR-ELISA for direct detection of MRSA in nasal swabs advantageous for rapid identification of non-MRSA carriers. Eur J Clin Microbiol Infect Dis 2006; 25: 328–30PubMedCrossRefGoogle Scholar
  41. 41.
    Wagenvoort JHT, van de Cruijs MFHA, Meuwissen CTM, et al. Comparison of an enrichment broth-enhanced commercial PCR procedure versus bacteriological culture for separating non-colonized from suspected or colonized MRSA individuals. Eur J Clin Microbiol Infect Dis 2006; 26: 155–60CrossRefGoogle Scholar
  42. 42.
    Stamper PD, Cai M, Howard T, et al. Clinical validation of the molecular BD GeneOhm StaphSR assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J Clin Microbiol 2007; 45: 2191–6PubMedCrossRefGoogle Scholar
  43. 43.
    Shrestha NK, Tuohy MJ, Padmanabhan RA, et al. Evaluation of the LightCycler Staphylococcus MGRADE kits on positive blood cultures that contained gram-positive cocci in clusters. J Clin Microbiol 2005; 43: 6144–6PubMedCrossRefGoogle Scholar
  44. 44.
    hyplex StaphyloResist®, hyplex StaphyloResist® plus [package insert]. Lich: BAG Health Care, 2007: 19-33Google Scholar
  45. 45.
    Eigner U, Holfelder M, Wild U, et al. Evaluation of a rapid molecular dipstick assay for the direct detection of methicillin-resistant Staphylococcus aureus in clinical specimens [abstract no. 1732-14]. 17th European Congress of Clinical Microbiology and Infectious Diseases ICC; 2007 Mar 31-Apr 3; MunichGoogle Scholar
  46. 46.
    Forrest GN, Mehta S, Weekes E, et al. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother 2006; 58: 154–8PubMedCrossRefGoogle Scholar
  47. 47.
    Oliveira K, Procop GW, Wilson D, et al. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 2002; 40: 247–51PubMedCrossRefGoogle Scholar
  48. 48.
    Oliveira K, Brecher SM, Durbin A, et al. Direct identification of Staphylococcus aureus from positive blood culture bottles. J Clin Microbiol 2003; 41: 889–91PubMedCrossRefGoogle Scholar
  49. 49.
    Chapin K, Musgnug M. Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures. J Clin Microbiol 2003; 41(9): 4324–7PubMedCrossRefGoogle Scholar
  50. 50.
    Gonzalez V, Padilla E, Gimenez M, et al. Rapid diagnosis of Staphylococcus aureus bacteremia using S. aureus PNA FISH. Eur J Clin Microbiol Infect Dis 2004; 23: 396–8PubMedCrossRefGoogle Scholar
  51. 51.
    MRSA Evigene™ [package insert]. Woburn (MA): AdvanDx, Inc., 2005Google Scholar
  52. 52.
    Poulsen AB, Skov R, Pallesen LV. Detection of Methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA Detection Kit. J Antimicrob Chemother 2003; 51: 419–21PubMedCrossRefGoogle Scholar
  53. 53.
    Levi K, Towner KJ. Detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood with the EVIGENE MRSA detection kit. J Clin Microbiol 2003; 41: 3890–2PubMedCrossRefGoogle Scholar
  54. 54.
    Carroll KC, Leonard RB, Newcomb-Gayman PL, et al. Rapid detection of the staphylococcal mecA gene from B ACTEC blood culture bottles by the polymerase chain reaction. Am J Clin Pathol 1996; 106: 600–5PubMedGoogle Scholar
  55. 55.
    Kitagawa Y, Ueda M, Ando N, et al. Rapid diagnosis of methicillin-resistant Staphylococcus aureus bacteremia by nested polymerase chain reaction. Ann Surg 1996; 224: 665–71PubMedCrossRefGoogle Scholar
  56. 56.
    Louie L, Goodfellow J, Mathieu P, et al. Rapid detection of methicillin-resistant staphylococci from blood culture bottles by using a multiplex PCR assay. J Clin Microbiol 2002; 40: 2786–90PubMedCrossRefGoogle Scholar
  57. 57.
    Lern P, Spiegelman J, Toye B, et al. Direct detection of mecA, nuc and 16SrRNA genes in BacT/Alert blood culture bottles. Diagn Microbiol Infect Dis 2001; 41: 165–8CrossRefGoogle Scholar
  58. 58.
    Stratidis J, Bia FJ, Edberg SC. Use of real-time polymerase chain reaction for identification of methicillin-resistant Staphylococcus aureus directly from positive blood culture bottles. Diagn Microbiol Infect Dis 2007; 58: 199–202PubMedCrossRefGoogle Scholar
  59. 59.
    Grobner A, Kempf VAJ. Rapid detection of methicillin-resistant staphylococci by real-time PCR directly from positive blood culture bottles. Eur J Clin Microbiol Infect Dis 2007; 26: 751–4PubMedCrossRefGoogle Scholar
  60. 60.
    Fujita SI, Senda Y, Iwagami T, et al. Rapid identification of staphylococcal strains from positive-testing blood culture bottles by internal transcribed spacer PCR followed by microchip gel electrophoresis. J Clin Microbiol 2005; 43: 1149–57PubMedCrossRefGoogle Scholar
  61. 61.
    Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acid Res 2000; 28: e63PubMedCrossRefGoogle Scholar
  62. 62.
    Struelens MJ, Denis O. Rapid molecular detection of methicillin-resistant Staphylococcus aureus: a cost-effective tool for infection control in critical care? Crit Care 2006; 10: 128PubMedCrossRefGoogle Scholar
  63. 63.
    Cunningham R, Jenks P, Northwood J, et al. Effect of MRSA transmission on rapid PCR testing of patients admitted to critical care. J Hosp Infect 2007; 65: 24–8PubMedCrossRefGoogle Scholar
  64. 64.
    Harbarth S, Masuet-Aumatell C, Schrenzel J, et al. Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant Staphylococcus aureus in critical care: an interventional cohort study. Crit Care 2006; 10: R25PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations