Advertisement

Molecular Diagnosis & Therapy

, Volume 11, Issue 4, pp 227–238 | Cite as

Biomarkers of Lymphatic Function and Disease

State of the Art and Future Directions
  • Kenta Nakamura
  • Stanley G. RocksonEmail author
Hematologic and Lymphatic Disorders

Abstract

Substantial advances have accrued over the last decade in the identification of the processes that contribute to lymphatic vascular development in health and disease. Identification of distinct regulatory milestones, from a variety of genetic models, has led to a stepwise chronology of lymphatic development. Several molecular species have been identified as important tissue biomarkers of lymphatic development and function. At present, vascular endothelial growth-factor receptor (VEGFR)-3/VEGF-C/VEGF-D signaling has proven useful in the identification of clinical lymphatic metastatic potential and the assessment of cancer prognosis. Similar biomarkers, to be utilized as surrogates for the assessment of inherited and acquired diseases of the lymphatic circulation, are actively sought, and will represent a signal advance in biomedical investigation.

Keywords

Lymphatic Vessel Lymphedema Lymphatic Endothelial Cell Lymphatic Capillary Vascular Endothelial Growth Factor Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Beilhack A, Rockson SG. Immune traffic: a functional overview. Lymphat Res Biol 2003; 1(3): 219–34PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson LA, Clasper S, Holt AP, et al. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 2006; 203(12): 2763–77PubMedCrossRefGoogle Scholar
  3. 3.
    Saharinen P, Tammela T, Karkkainen MJ, et al. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 2004; 25(7): 387–95PubMedCrossRefGoogle Scholar
  4. 4.
    Gerli R, Solito R, Weber E, et al. Specific adhesion molecules bind anchoring filaments and endothelial cells in human skin initial lymphatics. Lymphology 2000; 33(4): 148–57PubMedGoogle Scholar
  5. 5.
    Ristevski B, Becker H, Cybulsky M, et al. Lymph, lymphocytes, and lymphatics. Immunol Res 2006; 35(1–2): 55–64PubMedCrossRefGoogle Scholar
  6. 6.
    Harvey NL, Srinivasan RS, Dillard ME, et al. Lymphatic vascular defects promoted by Prox 1 haploinsufficiency cause adult-onset obesity. Nat Genet 2005; 37(10): 1072–81PubMedCrossRefGoogle Scholar
  7. 7.
    Rockson SG. Lymphedema. Am J Med 2001; 110(4): 288–95PubMedCrossRefGoogle Scholar
  8. 8.
    Stacker SA, Achen MG, Jussila L, et al. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002; 2(8): 573–83PubMedCrossRefGoogle Scholar
  9. 9.
    Stacker SA, Baldwin ME, Achen MG. The role of tumor lymphangiogenesis in metastatic spread. FASEB J 2002; 16(9): 922–34PubMedCrossRefGoogle Scholar
  10. 10.
    Schoppmann SF. Lymphangiogenesis, inflammation and metastasis. Anticancer Res 2005; 25(6C): 4503–11PubMedGoogle Scholar
  11. 11.
    Achen MG, Stacker SA. Tumor lymphangiogenesis and metastatic spread: new players begin to emerge. Int J Cancer 2006; 119(8): 1755–60PubMedCrossRefGoogle Scholar
  12. 12.
    KriehuberE, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194(6): 797–808CrossRefGoogle Scholar
  13. 13.
    Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001; 20(17): 4762–73PubMedCrossRefGoogle Scholar
  14. 14.
    Podgrabinska S, Braun P, Velasco P, et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A 2002; 99: 16069–74PubMedCrossRefGoogle Scholar
  15. 15.
    Hirakawa S, Hong YK, Harvey N, et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 2003; 162(2): 575–86PubMedCrossRefGoogle Scholar
  16. 16.
    Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol 2003; 1(2): 159–69PubMedCrossRefGoogle Scholar
  17. 17.
    Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000; 25(2): 153–9PubMedCrossRefGoogle Scholar
  18. 18.
    Tabibiazar R, Cheung L, Han J, et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med 2006; 3(7): e254PubMedCrossRefGoogle Scholar
  19. 19.
    Rutkowski JM, Moya M, Johannes J, et al. Secondary lymphedema in the mouse tail: lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc Res 2006; 72(3): 161–71PubMedCrossRefGoogle Scholar
  20. 20.
    Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438(7070): 946–53PubMedCrossRefGoogle Scholar
  21. 21.
    Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 2006 Dec; 25(4): 677–94PubMedCrossRefGoogle Scholar
  22. 22.
    Ji RC. Characteristics of lymphatic endothelial cells in physiological and pathological conditions. Histol Histopathol 2005; 20(1): 155–75PubMedGoogle Scholar
  23. 23.
    Kato S, Shimoda H, Ji RC, et al. Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anat Sci Int 2006; 81(2): 71–83PubMedCrossRefGoogle Scholar
  24. 24.
    Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol 2006; 126(10): 2167–77PubMedCrossRefGoogle Scholar
  25. 25.
    Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005; 105(12): 4642–8PubMedCrossRefGoogle Scholar
  26. 26.
    Sato TN, Tozawa Y, Deutsch U, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002; 3(3): 411–23CrossRefGoogle Scholar
  27. 27.
    Makinen T, Adams RH, Bailey J, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005; 19(3): 397–410PubMedCrossRefGoogle Scholar
  28. 28.
    Kriederman BM, Myloyde TL, Witte MH, et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Genet 2003; 12(10): 1179–85PubMedCrossRefGoogle Scholar
  29. 29.
    Petrova TV, Karpanen T, Norrmen C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004 Sep; 10(9): 974–81PubMedCrossRefGoogle Scholar
  30. 30.
    Kajiya K, Hirakawa S, Ma B, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 2005; 24: 2885–95PubMedCrossRefGoogle Scholar
  31. 31.
    Huang XZ, Wu JF, Ferrando R, et al. Fatal bilateral chylothorax in mice lacking the integrin α9β1. Mol Cell Biol 2000; 20: 5208–15PubMedCrossRefGoogle Scholar
  32. 32.
    Ayadi A, Zheng H, Sobieszczuk P, et al. Net-targeted mutant mice develop a vascular phenotype and up-regulate EGR-1. EMBO J 2001; 20: 5139–52PubMedCrossRefGoogle Scholar
  33. 33.
    Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002; 129: 4797–806PubMedGoogle Scholar
  34. 34.
    Schacht V, Ramirez MI, Hong YK, et al. Tlalpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22: 3546–56PubMedCrossRefGoogle Scholar
  35. 35.
    Wigle JT, Oliver G. Prox 1 function is required for the development of the murine lymphatic system. Cell 1999; 98(6): 769–78PubMedCrossRefGoogle Scholar
  36. 36.
    Pennisi D, Gardner J, Chambers D, et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet 2000; 24: 434–7PubMedCrossRefGoogle Scholar
  37. 37.
    Abtahian F, Guerriero A, Sebzda E, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003; 299: 247–51PubMedCrossRefGoogle Scholar
  38. 38.
    Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276(5317): 1423–5PubMedCrossRefGoogle Scholar
  39. 39.
    Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5: 74–80PubMedCrossRefGoogle Scholar
  40. 40.
    Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282(5390): 946–9PubMedCrossRefGoogle Scholar
  41. 41.
    Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 2001; 98(22): 12677–82PubMedCrossRefGoogle Scholar
  42. 42.
    Aselli G. De lactibus sive lacteis venis quarto vasorum mesaraicorum genere, novo invento Gaspariis Asellii Cremonensis anatomici Ticinensis dissertatio, quasententiae anatomicae multae, vel perperam receptae conuelluntur, vel parum perceptae illustrantur. Mediolani: apud Jo. Baptistam Bidellium, 1627Google Scholar
  43. 43.
    Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1902; 1: 367–91CrossRefGoogle Scholar
  44. 44.
    Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004; 4(1): 35–45PubMedCrossRefGoogle Scholar
  45. 45.
    Petrova T, Makinen T, Makela T, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002; 16(9): 922–34Google Scholar
  46. 46.
    Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 2004; 112(7–8): 526–38PubMedCrossRefGoogle Scholar
  47. 47.
    Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144(4): 789–801PubMedCrossRefGoogle Scholar
  48. 48.
    Prevo R, Banerji S, Ferguson DJ, et al. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 2001; 276(22): 19420–30PubMedCrossRefGoogle Scholar
  49. 49.
    Pure E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med 2001 May; 7(5): 213–21PubMedCrossRefGoogle Scholar
  50. 50.
    Jackson DG, Prevo R, Clasper S, et al. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 2001; 22(6): 317–21PubMedCrossRefGoogle Scholar
  51. 51.
    Gale NW, Prevo R, Espinosa J, et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 2007; 27(2): 595–604PubMedCrossRefGoogle Scholar
  52. 52.
    Mouta Carreira C, Nasser SM, di Tomaso E, et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 2001; 61(22): 8079–84Google Scholar
  53. 53.
    Oliver G, Detmar M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 2002; 16(7): 773–83PubMedCrossRefGoogle Scholar
  54. 54.
    Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5(12): 1359–64PubMedCrossRefGoogle Scholar
  55. 55.
    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6(4): 389–95PubMedCrossRefGoogle Scholar
  56. 56.
    Veikkola T, Karkkainen M, Claesson-Welsh L, et al. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000; 60(2): 203–12PubMedGoogle Scholar
  57. 57.
    Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 1995; 92(8): 3566–70PubMedCrossRefGoogle Scholar
  58. 58.
    Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15(7): 1751PubMedGoogle Scholar
  59. 59.
    Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 1998; 95(2): 548–53PubMedCrossRefGoogle Scholar
  60. 60.
    Partanen TA, Arola J, Saaristo A, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 2000; 14(13): 2087–96PubMedCrossRefGoogle Scholar
  61. 61.
    Luttun A, Tjwa M, Carmeliet P. Placental growth factor (P1GF) and its receptor Flt1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann N Y Acad Sci 2002; 979: 80–93PubMedCrossRefGoogle Scholar
  62. 62.
    Suto K, Yamazaki Y, Morita T, et al. Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1. J Biol Chem 2005; 280(3): 2126–31PubMedCrossRefGoogle Scholar
  63. 63.
    Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev 2002; 82(3): 673–700PubMedGoogle Scholar
  64. 64.
    Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002; 21(7): 1505–13PubMedCrossRefGoogle Scholar
  65. 65.
    Paavonen K, Puolakkainen P, Jussila L, et al. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 2000; 156(5): 1499–504PubMedCrossRefGoogle Scholar
  66. 66.
    Kaipainen A, Korhonen J, Pajusola K, et al. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J Exp Med 1993; 178(6): 2077–88PubMedCrossRefGoogle Scholar
  67. 67.
    Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 1997; 188(1): 96–109PubMedCrossRefGoogle Scholar
  68. 68.
    Enholm B, Karpanen T, Jeltsch M, et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 2001; 88(6): 623–9PubMedCrossRefGoogle Scholar
  69. 69.
    Saaristo A, Veikkola T, Tammela T, et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med 2002; 196: 719–30PubMedCrossRefGoogle Scholar
  70. 70.
    Szuba A, Skobe M, Karkkainen MJ, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 2002; 16(14): 1985–7PubMedGoogle Scholar
  71. 71.
    Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7(2): 192–8PubMedCrossRefGoogle Scholar
  72. 72.
    Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277(5322): 55–60PubMedCrossRefGoogle Scholar
  73. 73.
    Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376(6535): 70–4PubMedCrossRefGoogle Scholar
  74. 74.
    Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87(7): 1171–80PubMedCrossRefGoogle Scholar
  75. 75.
    Gale N, Thurston G, Hackett S, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3: 411–23PubMedCrossRefGoogle Scholar
  76. 76.
    Weninger W, Partanen TA, Breiteneder-Geleff S, et al. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab Invest 1999; 79(2): 243–51PubMedGoogle Scholar
  77. 77.
    Breiteneder-Geleff S, Soleiman A, Kowalski H, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154(2): 385–94PubMedCrossRefGoogle Scholar
  78. 78.
    Oliver G, Harvey N. A stepwise model of the development of lymphatic vasculature. Ann N Y Acad Sci 2002; 979: 159–65PubMedCrossRefGoogle Scholar
  79. 79.
    Hong Y, Harvey N, Noh Y, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225: 351–7PubMedCrossRefGoogle Scholar
  80. 80.
    Chen H, Chedotal A, He Z, et al. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 1997; 19(3): 547–59PubMedCrossRefGoogle Scholar
  81. 81.
    Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92(6): 735–45PubMedCrossRefGoogle Scholar
  82. 82.
    Grainger RM. Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet 1992; 8(10): 349–55PubMedCrossRefGoogle Scholar
  83. 83.
    van der Putte SC. The early development of the lymphatic system in mouse embryos. Acta Morphol Neer1 Scand 1975 Dec; 13(4): 245–86Google Scholar
  84. 84.
    Kunstfeld R, Hirakawa S, Hong YK, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004; 104(4): 1048–57PubMedCrossRefGoogle Scholar
  85. 85.
    Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20(4): 672–82PubMedCrossRefGoogle Scholar
  86. 86.
    Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7(2): 186–91PubMedCrossRefGoogle Scholar
  87. 87.
    He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94(11): 819–25PubMedCrossRefGoogle Scholar
  88. 88.
    Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7(2): 199–205PubMedCrossRefGoogle Scholar
  89. 89.
    Van Trappen PO, Steele D, Lowe DG, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 2003; 201(4): 544–54CrossRefGoogle Scholar
  90. 90.
    Zeng Y, Opeskin K, Baldwin ME, et al. Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res 2004; 10(15): 5137–44PubMedCrossRefGoogle Scholar
  91. 91.
    Clarijs R, Schalkwijk L, Hofmann UB, et al. Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma. Cancer Res 2002; 62(23): 7059–65PubMedGoogle Scholar
  92. 92.
    Shields JD, Borsetti M, Rigby H, et al. Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer 2004; 90(3): 693–700PubMedCrossRefGoogle Scholar
  93. 93.
    Dadras SS, Lange-Asschenfeldt B, Velasco P, et al. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 2005; 18(9): 1232–42PubMedCrossRefGoogle Scholar
  94. 94.
    Pepper MS, Tille JC, Nisato R, et al. Lymphangiogenesis and tumor metastasis. Cell Tissue Res 2003; 4(1): 167CrossRefGoogle Scholar
  95. 95.
    He Y, Rajantie I, Unionen M, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004; 64(11): 3737–40PubMedCrossRefGoogle Scholar
  96. 96.
    Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005; 201(7): 1089–99PubMedCrossRefGoogle Scholar
  97. 97.
    Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007; 109(3): 1010–7PubMedCrossRefGoogle Scholar
  98. 98.
    Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275(5302): 964–7PubMedCrossRefGoogle Scholar
  99. 99.
    Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92(2): 362–7PubMedGoogle Scholar
  100. 100.
    Kerjaschki D, Huttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006; 12(2): 230–4PubMedCrossRefGoogle Scholar
  101. 101.
    Schledzewski K, Falkowski M, Moldenhauer G, et al. Lymphatic endotheliumspecific hyaluronan receptor LYVE-1 is expressed by stabilin-l+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 2006; 209(1): 67–77PubMedCrossRefGoogle Scholar
  102. 102.
    Meige H. Dystophie oedematoeuse hereditaire. Presse Med 1898; 6: 341–3Google Scholar
  103. 103.
    Milroy W. An undescribed variety of hereditary oedema. NY Med J 1892; 56: 505–8Google Scholar
  104. 104.
    Ferrell RE, Levinson KG, Esman JH, et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet 1998; 7(13): 2073–8PubMedCrossRefGoogle Scholar
  105. 105.
    Irrthum A, Devriendt K, Chitayat D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 2003; 72(6): 1470–8PubMedCrossRefGoogle Scholar
  106. 106.
    Fang J, Dagenais SL, Erickson RP, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 2000; 67(6): 1382–8PubMedCrossRefGoogle Scholar
  107. 107.
    Szuba A, Rockson SG. Lymphedema: classification, diagnosis and therapy. Vasc Med 1998; 3(2): 145–56PubMedGoogle Scholar
  108. 108.
    Olszewski WL, Engeset A, Romaniuk A, et al. Endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox. Lymphology 1990; 23(1): 23–33PubMedGoogle Scholar
  109. 109.
    Piller NB. Lymphedema, macrophages and benzopyrones. Lymphology 1980; 13: 109–19PubMedGoogle Scholar
  110. 110.
    Piller NB. Macrophage and tissue changes in the developmental phases of secondary lymphoedema and during conservative therapy with benzopyrone. Arch Histol Cytol 1990; 53: 209–18PubMedCrossRefGoogle Scholar
  111. 111.
    Schirger A, Harrison EG, Janes JM. Idiopathic lymphedema: review of 131 cases. JAMA 1962; 182: 124–32CrossRefGoogle Scholar
  112. 112.
    Maunsell E, Brisson J, Deschenes L. Arm problems and psychological distress after surgery for breast cancer. Can J Surg 1993; 36(4): 315–20PubMedGoogle Scholar
  113. 113.
    Passik SD, McDonald MV. Psychosocial aspects of upper extremity lymphedema in women treated for breast carcinoma. Cancer 1998; 83 (12 Suppl. American): 2817–20PubMedCrossRefGoogle Scholar
  114. 114.
    Velanovich V, Szymanski W. Quality of life of breast cancer patients with lymphedema. Am J Surg 1999; 177(3): 184–7PubMedCrossRefGoogle Scholar
  115. 115.
    Rockson SG. Addressing the unmet needs in lymphedema risk management. Lymphat Res Biol 2006 Spring; 4(1): 42–6PubMedCrossRefGoogle Scholar
  116. 116.
    Rockson SG, Miller LT, Senie R, et al. American Cancer Society Lymphedema Workshop. Workgroup III: diagnosis and management of lymphedema. Cancer 1998; 83 (12 Suppl. American): 2882–5PubMedCrossRefGoogle Scholar
  117. 117.
    Clodius L, Kohnlein H, Piller NB. Chronic limb lymphoedema produced solely by blocking the lymphatics in the subcutaneous compartment. Br J Plast Surg 1977; 30(2): 156–60PubMedCrossRefGoogle Scholar
  118. 118.
    Casley-Smith JR, Clodius L, Foldi-Borcsok E, et al. The effects of chronic cervical lymphostasis on regions drained by lymphatics and by prelymphatics. J Pathol 1978; 124(1): 13–7PubMedCrossRefGoogle Scholar
  119. 119.
    Foldi M. Anatomical and physiological basis for physical therapy of lymphedema. Experientia 1978; 33 Suppl.: 15–8Google Scholar
  120. 120.
    Olszewski WL. The treatment of lymphedema of the extremities with microsurgical lympho-venous anastomoses. Int Angiol 1988; 7(4): 312–21PubMedGoogle Scholar
  121. 121.
    Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 2003; 111(5): 717–25PubMedGoogle Scholar
  122. 122.
    Cheung L, Han J, Beilhack A, et al. An experimental model for the study of lymphedema and its response to therapeutic lymphangiogenesis. Biodrugs 2006; 20(6): 363–70PubMedCrossRefGoogle Scholar
  123. 123.
    Ny A, Koch M, Schneider M, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005; 11(9): 998–1004PubMedGoogle Scholar
  124. 124.
    Kuchler AM, Gjini E, Peterson-Maduro J, et al. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 2006; 16(12): 1244–8PubMedCrossRefGoogle Scholar
  125. 125.
    Pullinger D, Florey H. Proliferation of lymphatics in inflammation. J Pathol Bacteriol 1937; 45: 157–70CrossRefGoogle Scholar
  126. 126.
    Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Path 2002; 161: 947–56PubMedCrossRefGoogle Scholar
  127. 127.
    Hamrah P, Chen L, Zhang Q, et al. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 2003; 163(1): 57–68PubMedCrossRefGoogle Scholar
  128. 128.
    Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 1998; 273(14): 8413–8PubMedCrossRefGoogle Scholar
  129. 129.
    Mouta C, Heroult M. Inflammatory triggers of lymphangiogenesis. Lymphat Res Biol 2003; 1(3): 201–18PubMedCrossRefGoogle Scholar
  130. 130.
    Jackson JR, Seed MP, Kircher CH, et al. The codependence of angiogenesis and chronic inflammation. FASEB J 1997; 11(6): 457–65PubMedGoogle Scholar
  131. 131.
    Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia [see comments]. Circulation 1998; 97(12): 1114–23PubMedCrossRefGoogle Scholar
  132. 132.
    Rivard A, Isner JM. Angiogenesis and vasculogenesis in treatment of cardiovascular disease. Mol Med 1998; 4(7): 429–40PubMedGoogle Scholar
  133. 133.
    An A, Rockson SG. The potential for molecular treatment strategies in lymphatic disease. Lymphat Res Biol 2004; 2(4): 173–81PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2007

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine, Center for Lymphatic and Venous DisordersStanford University School of MedicineStanfordUSA

Personalised recommendations