Advertisement

Journal of the Iranian Chemical Society

, Volume 6, Issue 4, pp 647–678 | Cite as

Basic ionic liquids. A short review

Article

Abstract

Basic ionic liquids as environmental-friendly solvents and catalysts with high activity and selectivity and easily recovered materials were used to replace traditional bases such as KOH, NaOH, K2CO3, NaHCO3, NaOAc, triethylamine, or tetrabutylammonium acetate. Using the traditional bases generally suffered from disadvantages such as waste production, corrosion and environmental problems. Basic ionic liquids offering a new possibility for developing environmentally friendly basic catalysts due to the combination of the advantages of inorganic bases and ionic liquids. They are flexible, nonvolatile,noncorrosive, and immiscible with many organic solvents. Basic ionic liquids (BILs) have been used in base-catalyzed processes such as Michael addition, Markovnikov addition, Knoevenagel condensation, Henry reaction, Mannich reaction, oximation, Feist-Benary reaction and etc. In this short review, we wish to present an overview of the types, properties, synthesis and applications of basic ionic liquids.

Keywords

Basic ionic liquids Task-specific ionic liquids Lewis base ionic liquids Condensation reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Yavari, E. Kowsari, Tetrahedron Lett. 48 (2007) 3753.Google Scholar
  2. [2]
    K. Gong, H.L. Wang, D. Fang, Z.L. Liu, Catal. Commun. 9 (2008) 650.Google Scholar
  3. [3]
    J.M. Xu, Q. Wu, Q.Y. Zhang, F. Zhang, X. Fu Lin, Eur. J. Org. Chem. (2007) 1798.Google Scholar
  4. [4]
    S. Chowdhury, R.S. Mohan, J.L. Scott. Tetrahedron 63 (2007) 2363.Google Scholar
  5. [5]
    J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J.P. Bazureau, J. Hamelin. Catal. Commun. 3 (2002) 185.Google Scholar
  6. [6]
    T. Joseph, S. Sahoo, S.B. Halligudi, J. Mol. Catal. A: Chem. 234 (2005) 107.Google Scholar
  7. [7]
    H. Xing, T. Wang, Z. Zhou, Y. Dai, Ind. Eng. Chem. Res. 44 (2005) 4147.Google Scholar
  8. [8]
    H.P. Zhu, F. Yang, J. Tang, M.Y. He, Green Chem. 5 (2003) 38.Google Scholar
  9. [9]
    D. Fang, X. Zhou, Z. Ye, Z. Liu, Ind. Eng. Chem. Res. 45 (2006) 7982.Google Scholar
  10. [10]
    G. Driver, K.E. Johnson, Green Chem. 5 (2003) 163.Google Scholar
  11. [11]
    A. Zhu, T. Jiang, D. Wang, B. Han, L. Liu, J. Huang, J. Zhang, D. Sun, Green Chem. 7 (2005) 514.Google Scholar
  12. [12]
    N. Gupta, Sonu, G.L. Kad, J. Singh, Catal. Commun. 8 (2007) 1323.Google Scholar
  13. [13]
    H.H. Wu, F. Yang, P. Cui, J. Tang, M.Y. He, Tetrahedron Lett. 45 (2004) 4963.Google Scholar
  14. [14]
    Y.J. Kim, R.S. Varma, Tetrahedron Lett. 46 (2005) 7447.Google Scholar
  15. [15]
    A.R. Hajipour, P. Hosseini, A.E. Ruoho, Phosphorus, Sulfur Silicon Relat. Elem. 183 (2008) 2502.Google Scholar
  16. [16]
    A.R. Hajipour, L. Khazdooz, A.E. Ruoho, Catal. Commun. 9 (2008) 89.Google Scholar
  17. [17]
    K. Qiao, C. Yokoyama, Catal. Commun. 7 (2006) 450.Google Scholar
  18. [18]
    T. Ogoshi, T. Onodera, T. Yamagishi, Y. Nakamoto, Macromolecules 41 (2008) 8533.Google Scholar
  19. [19]
    S. Cui, B. Lu, Q. Cai, X. Cai, X. Li, X. Xiao, L. Hou, Y. Han, Ind. Eng. Chem. Res. 45 (2006) 1571.Google Scholar
  20. [20]
    J. Gui, H. Ban, X. Cong, X. Zhang, Z. Hu, Z. Sun, J. Mol. Catal. A: Chem. 225 (2005) 27.Google Scholar
  21. [21]
    P. Wasserscheid, M. Sesing, W. Korth, Green Chem. 4 (2002) 134.Google Scholar
  22. [22]
    J.H. Lin, C.P. Zhang, Z.Q. Zhu, Q.Y. Chen, J.C. Xiao, J. Fluorine Chem. 130 (2009) 394.Google Scholar
  23. [23]
    S. Liu, C. Xie, S. Yu, F. Liu, Catal. Commun. 9 (2008) 2030.Google Scholar
  24. [24]
    H. Wang, P. Cui, G. Zou, F. Yang, J. Tang, Tetrahedron 62 (2006) 3985.Google Scholar
  25. [25]
    E. Janus, I.G. Maciejewsk, M.L. Skib, J. Pernak, Tetrahedron Lett. 47 (2006) 4079.Google Scholar
  26. [26]
    T. Fischer, A. Sethi, T. Welton, J. Woolf, Tetrahedron Lett. 40 (1999) 793.Google Scholar
  27. [27]
    S. Sahoo, T. Joseph, S.B. Halligudi, J. Mol. Catal. A: Chem. 244 (2006) 179.Google Scholar
  28. [28]
    G. Zhao, T. Jiang, H. Gao, B. Han, J. Huang, D. Sun, Green Chem. 6 (2004) 75.Google Scholar
  29. [29]
    A.R. Hajipour, F. Rafiee, A.E. Ruoho, J. Iran. Chem. Soc. In press (2009).Google Scholar
  30. [30]
    A.C. Chaskar, S.R. Bhandari, A.B. Patil, O.P. Sharma, S. Mayeker, Synth. Commun. 39 (2009) 366.Google Scholar
  31. [31]
    A.R. Hajipour, F. Rafiee, A.E. Ruoho, Synlett. 7 (2007) 1118.Google Scholar
  32. [32]
    A.R. Hajipour, F. Rafiee, A.E. Ruoho, Synth. Commun. 36 (2006) 2563.Google Scholar
  33. [33]
    S. Li, Y. Lin, H. Xie, S. Zhang, J. Xu, Org. Lett. 8 (2006) 391.Google Scholar
  34. [34]
    J. Zhang, T. Jiang, B. Han, A. Zhu, Xiumin, Synth. Commun. 36 (2006) 3305.Google Scholar
  35. [35]
    Y. Hu, J. Chen, Z.G. Le, Q.G. Zheng, Synth. Commun. 35 (2005) 739.Google Scholar
  36. [36]
    J.R. Harjani, S.J. Nara, M.M. Salunkhe, Tetrahedron Lett. 43 (2002) 1127.Google Scholar
  37. [37]
    T. Jiang, H. Gao, B. Han, G. Zhao, Y. Chang, W. Wu, L. Gao, G. Yang, Tetrahedron Lett. 45 (2004) 2699.Google Scholar
  38. [38]
    S.A. Siddiqui, U.C. Narkhede, S.S. Palimkar, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Tetrahedron 61 (2005) 3539.Google Scholar
  39. [39]
    Q. Bao, K. Qiao, D. Tomida, C. Yokoyama, Catal. Commun. 9 (2008) 1383.Google Scholar
  40. [40]
    T.M. Potewar, S.A. Siddiqui, R.J. Lahoti, K.V. Srinivasan, Tetrahedron Lett. 48 (2007) 1721.Google Scholar
  41. [41]
    Y.Y. Wang, W. Li, L.Y. Dai, Chin. J. Chem. 26 (2008) 1390.Google Scholar
  42. [42]
    J. Shen, H. Wang, H. Liu, Y. Sun, Z. Liu, J. Mol. Catal. A: Chem. 280 (2008) 24.Google Scholar
  43. [43]
    W. Wang, L. Shao, W. Cheng, J. Yang, M. He, Catal. Commun. 9 (2008) 337.Google Scholar
  44. [44]
    H. Xing, T. Wang, Z. Zhou, Y. Dai, Ind. Eng. Chem. Res. 44 (2005) 4147.Google Scholar
  45. [45]
    S. Luo, X. Mi, L. Zhang, S. Liu, H. Xua, J.P. Cheng, Tetrahedron 63 (2007) 1923.Google Scholar
  46. [46]
    P.J. Carvalho, V.H. Álvarez, I.M. Marrucho, M. Aznar, J.A.P. Coutinho, J. Supercritical Fluids 50 (2009) 105.Google Scholar
  47. [47]
    T.J. Tempel, Us patent 7282084 (2007).Google Scholar
  48. [48]
    J.M. Xu, C. Qian, B.K. Liu, Q. Wu, X.F. Lin, Tetrahedron 63 (2007) 986.Google Scholar
  49. [49]
    M. Hut’ka, S. Toma, Monatsh Chem. 140 (2009) 1189.Google Scholar
  50. [50]
    C. Ye, J.C. Xiao, B. Twamley, A.D. LaLonde, M.G. Norton, J.M. Shreeve, Eur. J. Org. Chem. (2007) 5095.Google Scholar
  51. [51]
    L.F. Xiao, Q.F. Yue, C.G. Xia, L.W. Xu, J. Mol. Catal. A: Chem. 279 (2008) 230.Google Scholar
  52. [52]
    D.R. MacFarlane, J.M. Pringle, K.M. Johansson, S.A. Forsyth, M. Forsyth, Chem. Commun. (2006) 1905.Google Scholar
  53. [53]
    P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graetzel, Inorg. Chem. 35 (1996) 1168.Google Scholar
  54. [54]
    D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B. 103 (1999) 4164.Google Scholar
  55. [55]
    J. Golding, S. Forsyth, D.R. MacFarlane, M. Forsyth, G.B. Deacon, Green Chem. 4 (2002) 223.Google Scholar
  56. [56]
    Y. Yukihiro, M. Koji, O. Akihiro, S. Gunzi, T. Masahide, Y. Toshinobu, Inorg. Chem. 43 (2004) 1458.Google Scholar
  57. [57]
    M.A.P. Martins, C.P. Frizzo, D.N. Moreira, N. Zanatta, H.G. Bonacorso, Chem. Rev. 108 (2008) 2015.Google Scholar
  58. [58]
    G. Cheng, X. Duan, X. Qi, C. Lu, Catal. Commun. 10 (2008) 201.Google Scholar
  59. [59]
    Z. Fei, D. Zhao, T.J. Geldbach, R. Scopelliti, P.J. Dyson, Chem. Eur. J. 10 (2004) 4886.Google Scholar
  60. [60]
    C. Wang, L. Guo, H. Li, Y. Wang, J. Weng, L. Wu, Green Chem. 8 (2006) 603.Google Scholar
  61. [61]
    A.R. Hajipour, G. Azizi, A.E. Ruoho, Synth. Commun. 39 (2009) 242.Google Scholar
  62. [62]
    N. Bicak, J. Mol. Liq. 116 (2005) 15.Google Scholar
  63. [63]
    R. Zhang, X. Meng, Z. Liu, J. Meng, C. Xu, Ind. Eng. Chem. Res. 47 (2008) 8205.Google Scholar
  64. [64]
    C. Chiappe, E. Leandri, M. Tebano, Green Chem. 8 (2006) 742.Google Scholar
  65. [65]
    K. Elango, R. Srirambalaji, G. Anantharaman, Tetrahedron Lett. 48 (2007) 9059.Google Scholar
  66. [66]
    Q. Wu, H. Chen, M. Han, D. Wang, J. Wang, Ind. Eng. Chem. Res. 46 (2007) 7955.Google Scholar
  67. [67]
    B.Y. Liu, D.Q. Xu, Z.Y. Xu, Chin. J. Chem. 23 (2005) 803.Google Scholar
  68. [68]
    T.M. Laher, C.L. Hussey, Inorg. Chem. 22 (1983) 3247.Google Scholar
  69. [69]
    T.B. Scheffler, C.L. Hussey, Inorg. Chem. 23 (1984) 1926.Google Scholar
  70. [70]
    B.C. Ranu, S. Banerjee, Org. Lett. 7 (2005).Google Scholar
  71. [71]
    H. Wanga, Y. Liu, Z. Li, X. Zhang, S. Zhang, Y. Zhang, Eur. Polym. J. 45 (2009) 1535.Google Scholar
  72. [72]
    A.G. Ying, L. Liu, G.F. Wua, G. Chen, X.Z. Chen, W.D. Ye, Tetrahedron Lett. 50 (2009) 1653.Google Scholar
  73. [73]
    C. De, B. Lu, H. Lv, Y. Yu, Y. Bai, Q. Cai, Catal Lett. 128 (2009) 459.Google Scholar
  74. [74]
    M. Yoshizawa-Fujita, D.R. MacFarlane, P.C. Howlett, M. Forsyth, Electrochem. Commun. 8 (2006) 445.Google Scholar
  75. [75]
    M. Yoshizawa-Fujita, K. Johansson, P. Newman, D.R. MacFarlanea, M. Forsyth, Tetrahedron Lett. 47 (2006) 2755.Google Scholar
  76. [76]
    M.L. Deb, P.J. Bhuyan, Tetrahedron Lett. 46 (2005) 6453.Google Scholar
  77. [77]
    G. Jenner, Tetrahedron Lett. 42 (2001) 243.Google Scholar
  78. [78]
    D.W. Morrison, D.C. Forbes, J.H. Davis Jr, Tetrahedron Lett. 42 (2001) 6053.Google Scholar
  79. [79]
    F.A. Khan, J. Dash, R. Satapathy, S.K. Upadhyay, Tetrahedron Lett. 45 (2004) 3055.Google Scholar
  80. [80]
    B.C. Ranu, R. Jana. Eur. J. Org. Chem. (2006) 3767.Google Scholar
  81. [81]
    C. Paun, J. Barklie, P. Goodrich, H.Q.N. Gunaratne, A. McKeowna, V.I. Parvulescu, C. Hardacre, J. Mol. Catal. A: Chem. 269 (2007) 64.Google Scholar
  82. [82]
    Y. Zhang, C. Xia, Applied Catalysis A: General. In press (2009).Google Scholar
  83. [83]
    Y. Zhanga, Y. Zhaoa, C. Xia, J. Mol. Catal. A: Chem. 306 (2009) 107.Google Scholar
  84. [84]
    C. Xuewei, L. Xuehui, S. Hongbing, L. Yangxiao, W. Furong, H. Aixi, Chin. J. Catal. 29 (2008) 957.Google Scholar
  85. [85]
    H. Wu, F.R. Zhang, Y. Wan, L. Ye, Lett. Org. Chem. 5 (2008) 209.Google Scholar
  86. [86]
    B.C. Ranu, S. Banerjee, R. Jana, Tetrahedron Lett. 63 (2007) 776.Google Scholar
  87. [87]
    D. Thiele, R.F. Souza, J. Mol. Catal. A: Chem. 264 (2007) 293.Google Scholar
  88. [88]
    L. Yang, L.W. Xu, W. Zhou, L. Li, C.G. Xia, Tetrahedron Lett. 47 (2006) 7723.Google Scholar
  89. [89]
    X. Wei, D. Zhang, C. Zhang, C. Liu, J. Quantum Chem., Published Online (2009).Google Scholar
  90. [90]
    L.D.S. Yadav, A. Rai, Tetrahedron Lett. 50 (2009) 640.Google Scholar
  91. [91]
    W.B. Wu, N. Wang, J.M. Xu, Q. Wu, X.F. Lin, Chem. Commun. (2005) 2348.Google Scholar
  92. [92]
    J.M. Xu, B.K. Liu, W.B. Wu, C. Qian, Q. Wu, X.F. Lin, J. Org. Chem. 71 (2006) 3991.Google Scholar
  93. [93]
    F.A. Davis, Y. Zhang, G. Anilkumar, J. Org. Chem. 68 (2003) 8061.Google Scholar
  94. [94]
    G.B. Evans, R.H. Furneaux, P.C. Tyler, V.L. Schramm, Org. Lett. 5 (2003) 3639.Google Scholar
  95. [95]
    K. Gong, D. Fang, H.L. Wang, Z.L. Liu, Monatsh. Chem. 138 (2007) 1195.Google Scholar
  96. [96]
    R. Ballini, G. Bosica, M.L. Conforti, R. Maggi, A. Mazzacanni, P. Righi, G. Sartori, Tetrahedron 57 (2001) 1395.Google Scholar
  97. [97]
    R. Maggi, R. Ballini, G. Sartori, R. Sartorio, Tetrahedron Lett. 45 (2004) 2297.Google Scholar
  98. [98]
    D. Kumar, V.B. Reddy, G.B. Mishra, R.K. Rana, M.N. Nadagouda, R.S. Varma, Tetrahedron 63 (2007) 3093.Google Scholar
  99. [99]
    L. Chen, X.J. Huang, Y.Q. Li, M.Y. Zhou, W.J. Zheng, Monatsh Chem. 140 (2009) 45.Google Scholar
  100. [100]
    J.R. Valbert, US Patent 3715388 (1973).Google Scholar
  101. [101]
    E. Gehrer, W. Harder, US Patent 5306847 (1994).Google Scholar
  102. [102]
    S. Ludwig, E. Manufred, US Patent 5616817 (1997).Google Scholar
  103. [103]
    M. Tojo, K. Oonishi, US Patent 6479689 (2002).Google Scholar
  104. [104]
    M. Tojo, K. Oonishi, US Patent 6346638 (2002).Google Scholar
  105. [105]
    A.R. Hajipour, N.J. Mahboobkhah, J. Chem. Res. (S) 122 (1998).Google Scholar
  106. [106]
    A.R. Hajipour, E. Mallakpour, G. Imanzadeh, J. Chem. Res. (S) 228 (1999).Google Scholar
  107. [107]
    A.R. Hajipour, I.M. Baltork, K. Nikbaghat, G. Imanzadeh, Synth. Commun. 29 (1999) 1697.Google Scholar
  108. [108]
    Y.H. Chiang, J. Org. Chem. 36 (1971) 2146.Google Scholar
  109. [109]
    H. Zang, M. Wang, B.W. Cheng, J. Song, Ultra. Sonochem. 16 (2009) 301.Google Scholar
  110. [110]
    J.J. Wu, S.C. Liu, J. Phys. Chem. B 106 (2002) 9546.Google Scholar
  111. [111]
    P.X. Gao, Y. Ding, Z.L. Wang, Nano Lett. 3 (2003) 1315.Google Scholar
  112. [112]
    M. Movahedi, E. Kowsari, A.R. Mahjoub, I. Yavari, Materials Lett. 62 (2008) 3856.Google Scholar
  113. [113]
    Y.P. Patil, P.J. Tambade, K.M. Deshmukh, B.M. Bhanage, Catalysis Today. In press (2009).Google Scholar
  114. [114]
    G. Mross, E. Holtz, P. Langer, J. Org. Chem. 71 (2006) 8045.Google Scholar
  115. [115]
    M.A. Calter, R.M. Phillips, C. Flaschenriem J. Am. Chem. Soc. 127 (2005) 14566.Google Scholar
  116. [116]
    B.C. Ranu, L. Adak, S. Banerjee, Tetrahedron Lett. 49 (2008) 4613.Google Scholar
  117. [117]
    K. Troev, G. Grancharov, R. Tsevi, I. Gitsov, J. Appl. Polym. Sci. 90 (2003) 1148.Google Scholar
  118. [118]
    C.H. Chen, J. Appl. Polym. Sci. 87 (2003) 2004.Google Scholar
  119. [119]
    D.D. DesMarteau, A.L. Beyerlein, I. Kul, US Patent 06546740 (2003).Google Scholar
  120. [120]
    D.D. DesMarteau, A.L. Beyerlein, I. Kul, US Patent 06574973 (2003).Google Scholar
  121. [121]
    J.H. Kim, S. Kwak, J.S. Lee, H.T. Vo, C.S. Kim, H.J. Kang, H.S. Kim, H. Lee, Appl. Catal. B: Environmental 89 (2009) 137.Google Scholar
  122. [122]
    L.M. Oh, P.G. Spoors, R.M. Goodman, Tetrahedron Lett. 45 (2004) 4769.Google Scholar
  123. [123]
    P. Tundo, L. Rossi, A. Loris, J. Org. Chem. 70 (2005) 2219.Google Scholar
  124. [124]
    M. Selva, A. Perosa, P. Tundo, D. Brunelli, J. Org. Chem. 71 (2006) 5770.Google Scholar
  125. [125]
    W.C. Shieh, S. Dell, O. Repič, J. Org. Chem. 67 (2002) 2188.Google Scholar
  126. [126]
    M. Selva, P. Tundo, J. Org. Chem. 71 (2006) 1464.Google Scholar
  127. [127]
    X. Fu, Z. Zhang, C. Li, L. Wang, H. Ji, Y. Yang, T. Zou, G. Gao, Catal. Commun. 10 (2009) 665.Google Scholar
  128. [128]
    T. Jiang, X. Ma, Y. Zhou, S. Liang, J. Zhang, B. Han, Green Chem. 10 (2008) 465.Google Scholar
  129. [129]
    R.S. Robinson, M.C. Dovey, D. Gravestock, Tetrahedron Lett. 45 (2004) 6787.Google Scholar
  130. [130]
    B.K. Banik, S. Samajdar, I. Banik, J. Org. Chem. 69 (2004) 213.Google Scholar
  131. [131]
    I. Yavari, E. Kowsari, Mol. Divers. Published Online (2009).Google Scholar
  132. [132]
    I. Yavari, E. Kowsari, Synlett. 6 (2008) 897.Google Scholar
  133. [133]
    G. Kaupp, M.R. Naimi-Jamal, J. Schmeyers, Tetrahedron 59 (2003) 3753.Google Scholar
  134. [134]
    T.S. Jin, A.Q. Wang, J.S. Zhang, F.S. Zhang, T.S. Li, Chin. J. Org. Chem. 24 (2004) 1598.Google Scholar
  135. [135]
    L. Chen, Y.Q. Li, X.J. Huang, W.J. Zheng, Heteroatom Chem. 20 (2009) 91.Google Scholar
  136. [136]
    B.C. Ranu, S. Banerjee, S. Roy, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 47 (2008) 1108.Google Scholar
  137. [137]
    Y.H. Rhyoo, A.Y. Yoon, J.H. Park, K.Y. Chung, Tetrahedron Lett. 42 (2001)5045.Google Scholar
  138. [138]
    J. Hannedouche, J.G. Clarkson, M. Willis, J. Am. Chem. Soc. 126 (2004) 986.Google Scholar
  139. [139]
    Y. Ma, H. Liu, L. Chen, X. Cui, J. Zhu, J. Deng, Org. Lett. 5 (2003) 2103.Google Scholar
  140. [140]
    A.R. Hajipour, B. Kooshki, A.E. Ruoho, Tetrahedron Lett. 46 (2005) 5503.Google Scholar
  141. [141]
    A.R. Hajipour, H. Bageri, A.E. Ruoho, Bull. Korean Chem. Soc. 25 (2004) 1238.Google Scholar
  142. [142]
    M.L. Kantam, U. Pal, B. Sreedhar, S. Bhargava, Y. Iwasawa, M. Tada, B.M. Choudary, Adv. Synth. Catal. 350 (2008) 1225.Google Scholar
  143. [143]
    C.S. Consorti, F.R. Flores, J. Dupont, J. Am. Chem. Soc. 127 (2005) 12054.Google Scholar
  144. [144]
    Y.C. Yang, J.A. Baker, J.R. Ward, Chem. Rev. 92 (1992) 1729.Google Scholar
  145. [145]
    J.S. Wilkes, P.J. Castle, J.A. Levisky, C.A. Corley, A. Hermosillo, M.F. Ditson, P.J. Cote, D.M. Bird, R.R. Hutchinson, K.A. Sanders, R.L. Vaughn, Ind. Eng. Chem. Res. 47 (2008) 3820.Google Scholar
  146. [146]
    S.A. Forsyth, D.R. MacFarlane, R.J. Thomson, M. Itzstein, Chem. Commun. (2002) 714.Google Scholar
  147. [147]
    T.J. Tempel US Patent 7172646 (2007).Google Scholar
  148. [148]
    N. Tachikawa, N. Serizawa, Y. Katayama, T. Miura, Electrochim. Acta 53 (2008) 6530.Google Scholar
  149. [149]
    I.W. Sun, C.L. Hussey, Inorg. Chem. 28 (1989) 2731.Google Scholar
  150. [150]
    I.W. Sun, E.H. Ward, C.L. Hussey, K.R. Seddon, J.E. Turp, Inorg. Chem. 26 (1987) 2140.Google Scholar
  151. [151]
    C. Pretti, C. Chiappe, D. Pieraccini, M. Gregori, F. Abramo, G. Monnia, L. Intorre, Green Chem. 8 (2006) 82.Google Scholar
  152. [152]
    D.J. Couling, R.J. Bernot, K.M. Docherty, J.K. Dixon, E.J. Maginn, Green Chem. 8 (2006) 82.Google Scholar
  153. [153]
    D. Zhao, Y. Liao, Z. Zhang, Clean. 35 (2007) 42.Google Scholar
  154. [154]
    K.M. Docherty, C.F. Kulpa, Green Chem. 7 (2005) 185.Google Scholar
  155. [155]
    Z. Duan, Y. Gu, Y. Deng, Catal. Commun. 7 (2006) 651.Google Scholar

Copyright information

© Iranian Chemical Society 2009

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Wisconsin, Medical SchoolMadisonUSA
  2. 2.Pharmaceutical Research Laboratory, College of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations