Advertisement

Journal of the Iranian Chemical Society

, Volume 7, Issue 4, pp 995–1003 | Cite as

The cationic halochromism of phenolate betaines: Molecular dynamics and quantum mechanics studies

  • M. Domínguez
  • M. Caroli RezendeEmail author
Article

Abstract

The cationic halochromism of phenolate betaines was reproduced with the aid of a simple theoretical model, by calculation of the longest wavelength transition energies of supermolecules obtained by positioning a cation Mn+ at a variable distance from the oxygen atom of the dye. The theoretical results were compared with experimental data for three systems, Reichardt’s betaine 1, Brooker’s merocyanine 2 and the N-methyl-8-oxyquinolinium dye 3. The model was validated by molecular dynamics simulations of solutions of dye 3, in methanol and DMSO, in the presence of variable concentrations of Na+.

Keywords

Cationic halochromism Solvatochromic betaines Molecular dynamics simulation Theoretical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.D. McNaught, A. Wilkinson, IUPAC Compendium of Chemical Terminology, 2nd ed., Blackwell Science, 1997.Google Scholar
  2. [2]
    C. Reichardt, Chem. Soc. Rev. 21 (1992) 147.Google Scholar
  3. [3]
    G. Laus, H. Schottenberger, K Wurst, J. Schütz, K.-H. Ongania, U.E. Horvath, Org. Biomol. Chem. 1 (2003) 1409.Google Scholar
  4. [4]
    J.K. Basu, M. Shannigrahi, N. Ray, S. Bagchi Spectrochim. Acta A 61 (2005) 2539.Google Scholar
  5. [5]
    S.P. Zanotto, M. Scremin, C. Machado, M.C. Rezende, J. Phys. Org. Chem. 6 (1993) 637.Google Scholar
  6. [6]
    M.C. Rezende, Tetrahedron 44 (1988) 3513.Google Scholar
  7. [7]
    C. Machado, M.G. Nascimento, M.C. Rezende, J. Chem. Soc. Perkin 2 (1994) 2539.Google Scholar
  8. [8]
    V.G. Machado, M.G. Nascimento, M.C. Rezende, Spectrosc. Lett. 31 (1998) 359.Google Scholar
  9. [9]
    V. Gageiro, M. Aillon, M.C. Rezende, J. Chem. Soc. Faraday Trans. 88 (1992) 201.Google Scholar
  10. [10]
    D.A. Binder, M.M. Kreevoy, J. Phys. Chem. 98 (1994) 10008.Google Scholar
  11. [11]
    D. Zanette, C. Zucco, M.C. Rezende, Tetrahedron 41 (1985) 87Google Scholar
  12. [12]
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, 2003.Google Scholar
  13. [13]
    A. Botrel, A. Le Beuze, P. Jacques, H. Strub, J. Chem. Soc. Faraday Trans. 2, 80 (1984) 1235.Google Scholar
  14. [14]
    J.O. Morley, R.M. Morley, R. Docherty, M.H. Charlton, J. Am. Chem. Soc. 119 (1997) 10192.Google Scholar
  15. [15]
    L.G.S. Brooker, C.H. Keys, R.H. Sprague, R.H. Van Dyke, F. Van Zandt, F.L. White, H.W.J. Cressman, S.G. Dent, J. Am. Chem. Soc. 73 (1951) 5332.Google Scholar
  16. [16]
    L.G.S. Brooker, C.H. Keys, D.W. Heseltine, J. Am. Chem. Soc. 73 (1951) 5350.Google Scholar
  17. [17]
    M. Ueda, Z.A. Schelly, Langmuir 5 (1989) 1005.Google Scholar
  18. [18]
    L.P. Novaki, O. El Seoud, Ber. Bunsenges. Phys. Chem. 100 (1996) 648.Google Scholar
  19. [19]
    J.M. Martínez, L. Martínez, J. Comput. Chem. 24 (2003) 819.Google Scholar
  20. [20]
    InsightII User Guide; Accelrys: San Diego, 1998.Google Scholar
  21. [21]
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14 (1996) 33.Google Scholar
  22. [22]
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26 (2005) 1781.Google Scholar
  23. [23]
    Gaussian 98, Revision A.11.3, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2002.Google Scholar
  24. [24]
    ZINDO: A Semi-Empirical Program Package, M.C. Zerner, University of Florida, Gainesville, FL 32611, USA.Google Scholar
  25. [25]
    C. Mascayano, M.C. Rezende, C. Mendez, G. Núñez, V. Chiang, J. Sol. Chem. 38 (2009) 363.Google Scholar
  26. [26]
    S.R. Mente, M. Maroncelli, J. Phys. Chem. 103 (1999) 7704.Google Scholar
  27. [27]
    M.Z. Hernandez, R. Longo, K. Coutinho, S. Canuto, Phys. Chem. Chem. Phys. 6 (2004) 2088.Google Scholar
  28. [28]
    J.O. Morley, J. Mol. Struct. (Theochem.) 301 (1994) 191.Google Scholar
  29. [29]
    A. Dreuw, M. Head-Gordon, Chem. Rev. 105 (2005) 4009.Google Scholar
  30. [30]
    M. Beckett, J. Dawber, J. Chem. Soc. Faraday Trans. 1 85 (1989) 727.Google Scholar
  31. [31]
    R.B. de Alencastro, J.D.D.M. Neto, M.C. Zerner, Int. J. Quantum Chem. Quantum Chem. Symp. 28 (1994) 361.Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  1. 1.Facultad de Química y BiologíaUniversidad de SantiagoSantiagoChile

Personalised recommendations