Advertisement

Journal of the Iranian Chemical Society

, Volume 7, Issue 2, pp 432–440 | Cite as

Purification of α-Amylase from Bacillus sp. GHA1 and its partial characterization

  • A. Ahmadi
  • S. Ghobadi
  • K. Khajeh
  • B. Nomanpour
  • A. Badoei Dalfard
Article

Abstract

Bacillus sp. GHA1 was isolated from water samples and screened for the production of α-amylase. Maximum production of amylase by this strain occurs at 42 °C, pH 6.5 and 72 h after cultivation in production medium. The enzyme was purified through successive applications of ammonium sulfate precipitation, ion exchange and hydrophobic interaction chromatography, resulting in a single band with an apparent molecular weight of 66 kDa, as judged by SDS-PAGE. Calcium analysis of the purified enzyme revealed that it contained three metal ions per molecule. The new extracellular α-amylase is active in a wide range of pH with its maximum activity at pH values 5.5–8.0. The optimum temperature for enzyme activity is 57 °C and the presence of calcium has relatively low influence on its activity and thermostability. The Bacillus sp. GHA1 α-amylase with these properties may be suitable for use in detergent and food industries.

Keywords

α-Amylase Bacillus sp. GHA1 pH profile Broad range of pH Industrial applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.E. Nielsen, T.V. Borchert, Biochim. Biophys. Acta 1543 (2000) 253.Google Scholar
  2. [2]
    L. Kandra, J. Mol. Struc. 666–667 (2003) 487.Google Scholar
  3. [3]
    M.J.E.C. van der Maarel, B. van der Veen, J.C.M. Uitdehaag, H. Leemhuis, L. Dijkhuizen, J. Biotechnol. 94 (2002) 137.Google Scholar
  4. [4]
    A. Pandey, P. Nigam, C.R. Soccol, V.T. Soccol, D. Singh, R. Mohan, Biotechnol. Appl. Biochem. 31 (2000) 135.Google Scholar
  5. [5]
    R.H. Sajedi, H. Naderi-Manesh, K. Khajeh, R. Ahmadvand, B. Ranjbar, A. Asoodeh, F. Moradian, Enzyme Microb. Technol. 36 (2005) 666.Google Scholar
  6. [6]
    R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Process Biochem. 38 (2003) 1599.Google Scholar
  7. [7]
    M. Fathi Najafi, Di. Deobagkar, De Deobagkar, Protein Expression Purif. 41 (2005)Google Scholar
  8. [8]
    S. Sivaramakrishnan, D. Gangadharan, K.M. Nampoothiri, C.R. Soccol, A. Pandey, Food Technol. Biotechnol. 44 (2006) 173.Google Scholar
  9. [9]
    G.B. Manning, L.L. Campbell, J. Biol. Chem. 236 (1961) 2952.Google Scholar
  10. [10]
    N. Saito, Arch. Biochem. Biophys. 155 (1973) 290.Google Scholar
  11. [11]
    T. Yamamoto, Handbook of Amylases and Related Enzymes, Pergamon Press, Oxford, England, 1988.Google Scholar
  12. [12]
    S. Ito, Extremophiles 1 (1997) 61.Google Scholar
  13. [13]
    K. Horikoshi, Agric. Biol. Chem. 35 (1971) 1783.Google Scholar
  14. [14]
    N. Wang, Y. Zhang, Q. Wang, J. Liu, H. Wang, Y. Xue, Y. Ma, Biotechnol. J. 1 (2006) 1258.Google Scholar
  15. [15]
    K. Igarashi, Y. Hatada, H. Hagihara, K. Saeki, M. Takaiwa, T. Uemura, K. Ara, K. Ozaki, S. Kawai, T. Kobayashi, S. Ito, Appl. Environ. Microbiol. 64 (1998) 3282.Google Scholar
  16. [16]
    P.H.A. Sneath, Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, USA, 1986.Google Scholar
  17. [17]
    J.M. Parry, P.C.B. Turnbull, J.R. Gibson. A Color Atlas of Bacillus Species, Wolfe Medical, London, 1983.Google Scholar
  18. [18]
    A. Badoei Dalfard, K. Khajeh, M.R. Soudi, H. Naderi- Manesh, B. Ranjbar, R.H. Sajedi, Enzyme Microb. Technol. 39 (2006) 1409.Google Scholar
  19. [19]
    P. Bernfeld, Methods Enzymol. 1 (1955) 149.Google Scholar
  20. [20]
    E.O. Hägele, E. Schaich, P. Lehmann, H. Bürk, A.W. Wahlefeld, Clin. Chem. 28 (1982) 2201.Google Scholar
  21. [21]
    H. Sheehan, B.V. McCleary, Biotechnol. Tech. 2 (1988) 289.Google Scholar
  22. [22]
    M.M. Bradford, Anal. Biochem. 72 (1976) 248.Google Scholar
  23. [23]
    U.K. Laemmli, Nature 227 (1970) 680.Google Scholar
  24. [24]
    C.N. Pace, F. Vajdos, L. Fee, G. Grimsley, T. Gray, Protein Sci. 4 (1995) 2411.Google Scholar
  25. [25]
    E.S. Demirkan, B. Mikami, M. Adachi, T. Higasa, S. Utsumi, Process Biochem. 40 (2005) 2629.Google Scholar
  26. [26]
    H. Hagihara, K. Igarashi, Y. Hayashi, K. Endo, K. Ikawa-Kitayama, K. Ozaki, Appl. Environ. Microbiol. 67 (2001) 1744.Google Scholar
  27. [27]
    N.J. Shih, R.G. Labbe, Appl. Environ. Microbiol. 61 (1995) 1776.Google Scholar
  28. [28]
    V. Paquet, C. Croux, G. Goma, P. Soucaille, Appl. Environ. Microbiol. 57 (1991) 212.Google Scholar
  29. [29]
    G. Mamo, B.A. Gashe, A. Gessesse, J. Appl. Microbiol. 86 (1999) 557.Google Scholar
  30. [30]
    M. Asgher, M. Javaid Asad, S.U. Rahman, R.L. Legge, J. Food Eng. 79 (2007) 950.Google Scholar
  31. [31]
    H. Iefuji, M. Chino, M. Kato, Y. Iimura, Biochem. J. 318 (1996) 989.Google Scholar
  32. [32]
    A. Burhan, U. Nisa, C. Gokhan, C. Omer, A. Ashabil, G. Osman, Process Biochem. 38 (2003) 1397.Google Scholar
  33. [33]
    C. Vieille, G.J. Zeikus, Microbiol. Mol. Biol. Rev. 65 (2001) 1.Google Scholar
  34. [34]
    R.D. Wind, R.M. Buitelaar, G. Eggink, H.J. Huizing, L. Dijkhuizen, Appl. Microbiol. Biotechnol. 41 (1994) 155.Google Scholar
  35. [35]
    M. Hashida, H. Bisgaard-Frantzen, Trends Glycosci. Glycotechnol. 68 (2000) 389.Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  • A. Ahmadi
    • 1
  • S. Ghobadi
    • 1
  • K. Khajeh
    • 2
  • B. Nomanpour
    • 3
  • A. Badoei Dalfard
    • 2
  1. 1.Department of Biology, Faculty of ScienceRazi UniversityKermanshahIran
  2. 2.Department of Biochemistry, Faculty of ScienceTarbiat Modarres UniversityTehranIran
  3. 3.Department of Microbiology, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations