Advertisement

Journal of the Iranian Chemical Society

, Volume 3, Issue 4, pp 378–386 | Cite as

Kinetics and mechanism of oxidation of 4-oxoacids by N-bromosuccinimide in aqueous acetic acid medium

  • N. A. Mohamed Farook
Article

Abstract

Kinetics and mechanism of oxidation of substituted and unsubstituted 4-oxoacids (S) by N-bromosuccinimide (NBS) in aqueous acetic acid medium have been studied potentiometrically. The reaction follows first-order kinetics, each in 4-oxoacids, NBS and H+. The effect of changes in the electronic nature of the substrate reveals that there is a development of positive charge in the transition state. Based on the kinetic results and the product analysis, a suitable mechanism has been proposed for the reaction of NBS with 4-oxoacids.

Keyword

Kinetics Oxidation 4-Oxoacids NBS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]a)
    N.P. Marigangaiah, K.K. Banerji, Indian J. Chem. 14A (1976) 660Google Scholar
  2. [1]b)
    A. Meenakshi, M. Santhappa, Indian J. Chem. 11 (1973) 393.Google Scholar
  3. [2]a)
    G.S. Sundaram, N. Venkatasubramanian, J. Chem. Soc. Perkin Trans 2 (1983) 949Google Scholar
  4. [2]b)
    J.P. Sharma, R.N.P. Singh, A.K. Singh, B. Singh, Tetrahedron 42 (1986) 2739Google Scholar
  5. [2]c)
    R. Ramachandrappa, M. Puttaswamy, S.M. Mayanna, N.M. Made Gowda, Int. J. Chem. Kinet. 30 (1998) 407Google Scholar
  6. [2]d)
    A.L. Harihar, M.R. Kembhavi, S.T. Nandibewoor, J. Indian Chem. Soc. 76 (1999) 128Google Scholar
  7. [2]e)
    A.K. Singh, S. Rahmani, K.V. Singh, V. Gupta, D. Kesarwani, B. Singh, Indian J. Chem. 40 (2001) 519Google Scholar
  8. [2]f)
    C. Karunakaran, K. Ganapathy, Indian J. Chem. 29A (1990) 133.Google Scholar
  9. [3]
    S.C. Negi, K.K. Banerji, Indian J. Chem. 21B (1982) 946.Google Scholar
  10. [4]a)
    B. Thimme Gowda, J. Ishwara Bhat, Indian J. Chem. 28A (1989) 211Google Scholar
  11. [4]b)
    A. Sukla, S.K. Upadhyay, Indian J. Chem. Soc. 11 (1992) 745Google Scholar
  12. [4]c)
    R. Saxena, S.K. Upadhyay, Indian J. Chem. 32A (1993) 1060Google Scholar
  13. [4]d)
    G. Gopalakrishnan, L.H. John, J. Org. Chem. 50 (1985) 1206Google Scholar
  14. [4]e)
    S. Bharat, P. Lalji, J. Sharma, S.M. Pandey, Tetrahedron 38 (1982) 169.Google Scholar
  15. [5]
    G. Sikkandar, Asian J. Chem. 12 (2000) 1037 and 1337.Google Scholar
  16. [6]
    K.A. Basheer Ahamed, G. Sikkandar, S. Kannan, Indian J. Chem. 38A (1999) 183Google Scholar
  17. [6]c)
    D. Freeda Gnana Rani, F.J. Maria Pushparaj, I. Alphones, K.S. Rangappa, Indian J. Chem. 41B (2002) 2153Google Scholar
  18. [6]d)
    G. Sikkandar, K.A. Basheer Ahamed, Indian J. Chem. 31A (1992) 845Google Scholar
  19. [6]e)
    M. Krishna Pillai, K. Banumathi, J. Chem. Research (1997) 225Google Scholar
  20. [6]f)
    M.V. Bhat, M.S. Ravindranathan, G.V. Rao, J. Org. Chem. 49 (1984) 3170.Google Scholar
  21. [7]
    E. Barnet, De. Barry, F.G. Sanders, J. Chem. Soc. (1933) 434.Google Scholar
  22. [8]
    L.F. Fieser, A.M. Seligman, J. Am. Chem. Soc. 60 (1938) 170.Google Scholar
  23. [9]
    E.L. Martin, J. Am. Chem. Soc. 58 (1936) 1439.Google Scholar
  24. [10]
    E. Burcher, Ann. Chim. 26 (1882) 435.Google Scholar
  25. [11]
    W.G. Douben, R.E. Adams, J. Am. Chem. Soc. 70 (1948) 1559.Google Scholar
  26. [12]
    C. Srinivasan, S. Rajagopal, A. Chellamani, J. Chem. Soc. Perkin Trans 2 (1990) 1839.Google Scholar
  27. [13]
    S. Perumal, M. Ganesan, Indian J. Chem. 28A (1989) 961.Google Scholar
  28. [14]
    S. Venkateswaralu, V. Jagannadham, Inidan J. Chem. 27A (1988) 314.Google Scholar
  29. [15]
    M.L. Bishnoi, S.C. Negi, Banerji, K.K. Indian J. Chem. 25A (1986) 660.Google Scholar
  30. [16]
    S. Khan, M.U. Khan, S.K. Singh, H.D. Gupta, P.K. Singh, Asian J. Chem. 15 (2003) 595.Google Scholar
  31. [17]
    K. Vivekanandan, K. Nambi, J. Indian Chem. Soc. 76 (1999) 198.Google Scholar
  32. [18]
    G. Sikkandar, K.A. Basheer Ahamed, Indian J. Chem. 31A (1992) 845.Google Scholar
  33. [19]a)
    A.K. Singh, S. Rahmani, K.V. Singh, V. Gupta, D. Kesarwani, B. Singh, Indian J. Chem. 40 (2001) 519Google Scholar
  34. [19]b)
    K.K. Banerji, Indian J. Chem. 16A (1978) 595.Google Scholar
  35. [20]
    N.P. Marigangaiah, K.K. Banerji, Aust. J. Chem. 29 (1976) 1939.Google Scholar
  36. [21]
    W.S. Nathan, H.B. Waston, J. Chem. Soc. (1933) 217.Google Scholar
  37. [22]a)
    K.B. Wiberg, Physical Organic Chemistry, John Wiley, New York, 1964, p. 416Google Scholar
  38. [22]b)
    E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt Riehart s Winston, New York, 1964, p. 181.Google Scholar
  39. [23]a)
    A.Y. Richard Johnes, Physical and Mechanistic Organic Chemistry, Cambridge Univ. Press, New York, 1984, p. 42Google Scholar
  40. [23]b)
    F. Ruff, A. Kucsman, J. Chem. Soc. Perkin Trans 2 (1985) 683.Google Scholar
  41. [24]
    F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, John Wiley, 5th ed., 1988, p. 707.Google Scholar
  42. [25]
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1984, p. 1222.Google Scholar
  43. [26]
    Neil Issacs, S. Physical Organic Chemistry, Longman Scientific s Technical, New York, 1987.Google Scholar
  44. [27]
    J.E. Leffler, E. Grunwald, Rates and Equilibrium of Organic Reactions, Wiley, New York, 1963.Google Scholar

Copyright information

© Iranian Chemical Society 2006

Authors and Affiliations

  1. 1.Department of ChemistryKhadir Mohideen CollegeAdirampattinamIndia

Personalised recommendations