Journal of the Iranian Chemical Society

, Volume 7, Issue 1, pp 1–37 | Cite as

Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications

Article

Abstract

This review focuses on the synthesis, protection, functionalization, characterization and with some applications of magnetic nanoparticles (MNPs). The review begins with an overview on magnetic property and single domain particles. The synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the synthesis of monodisperse samples of relatively large quantities are also discussed. Then, different methodologies for the protection and functionalization of the synthesized MNPs, together with the characterization techniques are explained. Finally, some of the recent industrial, biological, environmental and analyticals application of MNPs are briefly reviewed, and some future trends and perspectives in these research areas will be outlined.

Keywords

Magnetic nanoparticles Synthetic methods Protection and functionalization techniques Characterization Applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, New York, 2000.Google Scholar
  2. [2]
    N. Spaldin, Magnetic Materials: Fundamentals and Device Applications, Cambridge University Press, Cambridge, UK, 2003.Google Scholar
  3. [3]
    R.M. Cornell, U. Schwertmann, The Iron Oxide: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, Weinheim, Germany, 2003.Google Scholar
  4. [4]
    K.J. Klabunde (Ed.), Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.Google Scholar
  5. [5]
    G. Schmid (Ed.), Nanoparticles, Wiley-VCH, Weinheim, 2004.Google Scholar
  6. [6]
    A.P. Alivisatos, Science 271 (1996) 933.Google Scholar
  7. [7]
    A.L. Rogach, D.V. Talapin, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Adv. Funct. Mater. 12 (2002) 653.Google Scholar
  8. [8]
    T. Hyeon, Chem. Commun. 8 (2003) 927.Google Scholar
  9. [9]
    M.G. Bawendi, M.L. Steigerwald, L.E. Brus, Annu. Rev. Phys. Chem. 41 (1990) 477.Google Scholar
  10. [10]
    M.A. El-Sayed, Acc. Chem. Res. 34 (2001) 257.Google Scholar
  11. [11]
    Z. Xu, F.-S. Xiao, S.K. Purnell, O. Alexeev, S. Kawi, S.E. Deutsch, B.C. Gates, Nature 372 (1994) 346.Google Scholar
  12. [12]
    L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc. 109 (1987) 5649.Google Scholar
  13. [13]
    M.L. Steigerwald, L.E. Brus, Annu. Rev. Mater. Sci. 19 (1989) 471.Google Scholar
  14. [14]
    M.L. Steigerwald, L.E. Brus, Acc. Chem. Res. 23 (1990) 183.Google Scholar
  15. [15]
    A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Science 256 (1992) 1425.Google Scholar
  16. [16]
    M.J. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281 (1998) 2013.Google Scholar
  17. [17]
    W.C.W. Chan, S. Nie, Science 281 (1998) 2016.Google Scholar
  18. [18]
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4 (2005) 435.Google Scholar
  19. [19]
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss Science 307 (2005) 538.Google Scholar
  20. [20]
    J.M. Klostranec, W.C.W. Chan, Adv. Mater. 18 (2006) 1953.Google Scholar
  21. [21]
    Y. Yin, A.P. Alivisatos, Nature 437 (2005) 664.Google Scholar
  22. [22]
    J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem., Int. Ed. 46 (2007) 4630.Google Scholar
  23. [23]
    U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 19 (2007) 33.Google Scholar
  24. [24]
    A.-H. Lu, E.L. Salabas, F. Schüth, Angew. Chem., Int. Ed. 46 (2007) 1222.Google Scholar
  25. [25]
    D.S. Mathew, R.-S. Juang, Chem. Eng. J. 129 (2007) 51.Google Scholar
  26. [26]
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108 (2008) 2064.Google Scholar
  27. [27]
    W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3 (2008) 397.Google Scholar
  28. [28]
    A.S. Teja, P.-Y. Koh, Progress in Crystal Growth and Characterization of Materials 55 (2009) 22.Google Scholar
  29. [29]
    C. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, Dover Publications, Inc., New York, 1986.Google Scholar
  30. [30]
    C.M. Sorensen, in: K.J. Klabunde (Ed.), Nanoscale Materials in Chemistry, Wiley, New York, 2001.Google Scholar
  31. [31]
    A.H. Morrish, The Physical Principles of Magnetism, Wiley, New York, 1965.Google Scholar
  32. [32]
    E.C. Stoner, E.P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philos. Trans. R. Soc. A 240 (1948) 599.Google Scholar
  33. [33]
    S.-J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 122 (2000) 8581.Google Scholar
  34. [34]
    V.F. Puntes, K.M. Krishan, A.P. Alivisatos, Science 291 (2001) 2115.Google Scholar
  35. [35]
    X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong, S. Jin, Mater. Sci. Eng. A 286 (2000) 157.Google Scholar
  36. [36]
    S. Neveu, A. Bee, M. Robineau, D. Talbot, J. Colloid Interface Sci. 255 (2002) 293.Google Scholar
  37. [37]
    F. Grasset, N. Labhsetwar, D. Li, D.C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Langmuir 18 (2002) 8209.Google Scholar
  38. [38]
    S. Sun, H. Zeng, J. Am. Chem. Soc. 124 (2002) 8204.Google Scholar
  39. [39]
    J. Hu, I.M.C. Lo, G. Chen, Sep. Purif. Technol. 56 (2007) 249.Google Scholar
  40. [40]
    J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 3 (2004) 891.Google Scholar
  41. [41]
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287 (2000) 1989.Google Scholar
  42. [42]
    E.V. Shevchenko, D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, J. Am. Chem. Soc. 124 (2002) 11480.Google Scholar
  43. [43]
    V. LaMer, R. Dinegar, J. Am. Chem. Soc. 72 (1950) 4847.Google Scholar
  44. [44]
    H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, J. Colloid Interface Sci. 314 (2007) 274.Google Scholar
  45. [45]
    L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune, P.J. Jallet, Colloid Interface Sci. 212 (1999) 474.Google Scholar
  46. [46]
    E. Tronc, P. Belleville, J.-P. Jolivet, J. Livage, Langmuir 8 (1992) 313.Google Scholar
  47. [47]
    R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O’Horo, B.N. Ganguly, V. Mehrotra, M.W. Russell, D.R. Huffman, Science 257 (1992) 219.Google Scholar
  48. [48]
    L. Zhang, G.C. Papaefthymiou, J.Y.J. Ying, Appl. Phys. 81 (1997) 6892.Google Scholar
  49. [49]
    L. Shen, P.E. Laibinis, T.A. Hatton, Langmuir 15 (1999) 447.Google Scholar
  50. [50]
    R.Y. Hong, J.H. Li, H.Z. Li, J. Ding, Y. Zheng, D.G. Wei, J. Magn. Magn. Mater. 320 (2008) 1605.Google Scholar
  51. [51]
    C.Q. Hu, Z.H. Gao, X.R. Yang, Chem. Phys. Lett. 429 (2006) 513.Google Scholar
  52. [52]
    X. Qui, Chin. J. Chem. 18 (2000) 834.Google Scholar
  53. [53]
    R. Massart, V. Cabuil, J. Chim. Phys. 84 (1987) 7.Google Scholar
  54. [54]
    A.K. Gupta, S. Wells, IEEE Trans. Nanobiosci. 3 (2004) 66.Google Scholar
  55. [55]
    D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, J. Magn. Magn. Mater. 30 (2001) 225.Google Scholar
  56. [56]
    Z.L. Liu, H.B. Wang, Q.H. Lu, G.H. Du, L. Peng, Y.Q. Du, S.M. Zhang, K.L. Yao, J. Magn. Magn. Mater. 283 (2004) 258.Google Scholar
  57. [57]
    J.A. Lopez Perez, M.A. Lopez Quintela, J. Mira, J. Rivas, S.W. Charles, J. Phys. Chem. B 101 (1997) 8045.Google Scholar
  58. [58]
    J.A. Lopez Perez, M.A. López-Quintela, J. Mira, J. Rivas, IEEE Trans. Magn. 33 (1997) 4359.Google Scholar
  59. [59]
    P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Langmuir 15 (1999) 1945.Google Scholar
  60. [60]
    K.M. Lee, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, IEEE Trans. Magn. 28 (1992) 3180.Google Scholar
  61. [61]
    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Phys. Chem. B 104 (2000) 1141.Google Scholar
  62. [62]
    S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Langmuir 17 (2001) 2900.Google Scholar
  63. [63]
    J. Vidal-Vidal, J. Rivas, M.A. López-Quintela, Colloid Surf. A 288 (2006) 44.Google Scholar
  64. [64]
    S.G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, T. Hyeon, J. Am. Chem. Soc. 129 (2007) 12571.Google Scholar
  65. [65]
    Y. Chen, D.-L. Peng, D. Lin, X. Luo, Nanotechnology 18 (2007) 505703.Google Scholar
  66. [66]
    F. Davar, Z. Fereshteh, M. Salavati-Niasari, J. Alloys Compd. 476 (2009) 797.Google Scholar
  67. [67]
    T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, J. Am. Chem. Soc. 123 (2001) 12798.Google Scholar
  68. [68]
    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126 (2004) 273.Google Scholar
  69. [69]
    Y. Chen, D.-L. Peng, D. Lin, X. Luo, Nanotechnology 18 (2007) 505703.Google Scholar
  70. [70]
    K. Butter, K. Kassapidou, G.J. Vroege, A.P. Philipse, J. Colloid Interface Sci. 287 (2005) 485.Google Scholar
  71. [71]
    B. Mao, Z. Kang, E. Wang, S. Lian, L. Gao, C. Tian, C. Wang, Mater. Res. Bull. 41 (2006) 2226.Google Scholar
  72. [72]
    H. Zhu, D. Yang, L. Zhu, Surf. Coat. Technol. 201 (2007) 5870.Google Scholar
  73. [73]
    S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, J. Magn. Magn. Mater. 285 (2005) 296.Google Scholar
  74. [74]
    J. Wang, J. Sun, Q. Sun, Q. Chen, Mater. Res. Bull. 38 (2003) 1113.Google Scholar
  75. [75]
    F. Gözüak, Y. Köseoğlu, A. Baykal, H. Kavas, J. Magn. Magn. Mater. 321 (2009) 2170.Google Scholar
  76. [76]
    J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, J. Alloys Compd. 479 (2009) 791.Google Scholar
  77. [77]
    A.S. Teja, L.J. Holm, in: Y.P. Sun (Ed.), Production of Magnetic Oxide Nanoparticles, Supercritical Fluid Technology in Materials Science and Engineering: Synthesis, Properties and Applications, Elsevier, 2002, pp. 327–349.Google Scholar
  78. [78]
    Y. Hao, A.S. Teja, J. Mater. Res. 18 (2003) 415.Google Scholar
  79. [79]
    C. Xu, A.S. Teja, J. Supercrit. Fluids 44 (2008) 85.Google Scholar
  80. [80]
    S. Komarneni, H. Katsuki, Pure Appl. Chem. 74 (2002) 1537.Google Scholar
  81. [81]
    V. Sreeja, P.A. Joy, Mater. Res. Bull. 42 (2007) 1570.Google Scholar
  82. [82]
    Y. Hou S. Gao, J. Mater. Chem. 13 (2003) 1510.Google Scholar
  83. [83]
    M. Green, P. O’Brien, Chem. Commun. (2001) 1912.Google Scholar
  84. [84]
    Y.-P. Sun, X.-Q. Li, W.-X. Zhang, H.P. Wang, Colloid Surf. A 308 (2007) 60.Google Scholar
  85. [85]
    Y.-P. Sun, X.-Q. Li, J. Cao, W.-X. Zhang, H.P. Wang, Adv. Colloid Interface Sci. 120 (2006) 47.Google Scholar
  86. [86]
    T.J. Mason, J.P. Lorimal, Applied Sonochemistry, New York, Wiley, 2002.CrossRefGoogle Scholar
  87. [87]
    E.H. Kima, H.S. Lee, B.K. Kwak, B.-K. Kim, J. Magn. Magn. Mater. 289 (2005) 328.Google Scholar
  88. [88]
    V.V. Namboodiri, R.S. Varma, Green Chem. 3 (2001) 146.Google Scholar
  89. [89]
    S. Komarneni, Curr. Sci. 85 (2003) 1730.Google Scholar
  90. [90]
    W.-W. Wang, Mater. Chem. Phys. 108 (2008) 227.Google Scholar
  91. [91]
    W.-W. Wang, Y.-J. Zhu, M.-L. Ruan, J. Nanopart. Res. 9 (2007) 419.Google Scholar
  92. [92]
    H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, William Andrew Inc., 1999.Google Scholar
  93. [93]
    A. Tavakoli, M. Sohrabi, A. Kargari, Chem. Pap. 61 (2007) 151.Google Scholar
  94. [94]
    W. Chang, G. Skandan, S.C. Danforth, B.H. Kear, H. Hahn, Nanostruct. Mater. 4 (1994) 507.Google Scholar
  95. [95]
    C. Powell, J. Oxley, J. Blocher, Vapor Deposition, John Wiley & Sons, New York, 1966.Google Scholar
  96. [96]
    E. Flahaut, F. Agnoli, J. Sloan, C. O’Connor, M.L.H. Green, Chem. Mater. 14 (2002) 2553.Google Scholar
  97. [97]
    Z.H. Wang, C.J. Choi, B.K. Kim, J.C. Kim. Z.D. Zhang, Carbon 41 (2003) 1751.Google Scholar
  98. [98]
    B.H. Liu, J. Ding, Z.Y. Zhong, Z.L. Dong, T. White, J. Y. Lin, Chem. Phys. Lett. 358 (2002) 96.Google Scholar
  99. [99]
    V.P. Dravid, J.J. Host, M.H. Teng, B. Eillott, J.H. Hwang, D.L. Johnson, Nature 374 (1995) 602.Google Scholar
  100. [100]
    M.H. Teng, J.J. Host, J.H. Hwang, B.R. Elliott, J.R. Weertman, T.O.J. Mason, Mater. Res. 10 (1995) 233.Google Scholar
  101. [101]
    X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong, S. Jin, Mater. Sci. Eng. A 286 (2000) 157.Google Scholar
  102. [102]
    T. Hirano, T. Oku, K. Suganuma, Diamond Related Mater. 9 (2000) 476.Google Scholar
  103. [103]
    M. Kuno, T. Oku, K. Suganuma, Scr. Mater. 44 (2001) 1583.Google Scholar
  104. [104]
    T. Oku, M. Kuno, H. Kitahara, I. Narita, Int. J. Inorg. Mater. 3 (2001) 597.Google Scholar
  105. [105]
    X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong, S. Jin, Mater. Sci. Eng. A 286 (2000) 157.Google Scholar
  106. [106]
    J. Borysiuk, A. Grabias, J. Szczytko, M. Bystrzejewski, A. Twardowski, H. Lange, Carbon 46 (2008) 1693.Google Scholar
  107. [107]
    K.H. Ang, I. Alexandrou, N.D. Mathur, G.A.J. Amaratunga, S. Haq, Nanotechnology 15 (2004) 520.Google Scholar
  108. [108]
    M.P. Morales, O. Bomati-Miguel, R. Perez de Alejo, J. Ruiz-Cabello, S. Veintemillas-Vendaguer, K. Ogrady, J. Magn. Magn. Mater. 266 (2003) 102.Google Scholar
  109. [109]
    S. Veintemillas-Vendaguer, M.P. Morales, C. Serna, J. Mater. Lett. 35 (1998) 227.Google Scholar
  110. [110]
    S. Veintemillas-Vendaguer, M.P. Morales, O. Bomati-Miguel, C. Batista, X. Zhao, P. Bonville, R. Perez de Alejo, J. Ruiz-Cabello, M. Santos, J. Tendillo-Cortijo, J. Ferreiros, J. Phys. 37 (2004) 2054.Google Scholar
  111. [111]
    R. Alexandrescu, I. Morjan, I. Voicu, F. Dumitrache, L. Albu, I. Soare, G. Prodan, Appl. Surf. Sci. 248 (2005) 138.Google Scholar
  112. [112]
    E. Ye, B. Liu, W.Y. Fan, Chem. Mater. 19 (2007) 3845.Google Scholar
  113. [113]
    J.B. Park, S.H. Jeong, M.S. Jeong, J.Y. Kim, B.K. Cho, Carbon 46 (2008) 1369.Google Scholar
  114. [114]
    C.N. He, X.W. Du, J. Ding, C.S. Shi, J.J. Li, N.Q. Zhao, Carbon 44 (2006) 2330.Google Scholar
  115. [115]
    J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Phys. Rev. Lett. 87 (2001) 2755041.Google Scholar
  116. [116]
    H. Tokoro, S. Fujiia, T. Oku, J. Mater. Chem. 14 (2004) 253.Google Scholar
  117. [117]
    E.P. Yelsukov, A.I. Ul’yanov, A.V. Zagainov, N.B. Arsent’yeva, J. Magn. Magn. Mater. 258–259 (2003) 513.Google Scholar
  118. [118]
    M.A. Zalich, V.V. Baranauskas, J.S. Riffle, M. Saunders, T.G. Pierre, St. Chem. Mater. 18 (2006) 2648.Google Scholar
  119. [119]
    M. Bystrzejewski, A. Huczko, H. Lange, S. Cudzilo, W. Kicínski, Diamond Relat. Mater. 16 (2007) 225.Google Scholar
  120. [120]
    K.S. Martirosyan, L. Chang, J. Rantschler, S. Khizroev, D. Luss, D. Litvinov, IEEE Trans. Magn. 43 (2007) 157.Google Scholar
  121. [121]
    C.F. Wang, J.N. Wang, Z.M. Sheng, J. Phys. Chem. C 111 (2007) 6303.Google Scholar
  122. [122]
    H. Tokoro, S. Fujiia, T. Oku, J. Mater. Chem. 14 (2004) 253.Google Scholar
  123. [123]
    R.M. Cornell, U. Schertmann, Iron Oxides in the Laboratory: Preparation and Characterization, VCH Publishers, Weinheim, Germany, 1991.Google Scholar
  124. [124]
    S. Palmacci, L. Josephson, E.V. Groman, U.S. Patent 5, 262,176, 1995; Chem. Abstr. 1996, 122, 309897.Google Scholar
  125. [125]
    U. Hafeli, W. Schütt, J. Teller, M. Zbrorowski, Scientific and Clinical Applications of Magnetic Carriers, Plenum Press, New York, 1997.Google Scholar
  126. [126]
    R. Arshady, Radiolabeled and Magnetic Particles in Medicine and Biology, Vol. 3, Critrus Books, London, UK, 2001.Google Scholar
  127. [127]
    L.N. Okassa, H. Marchais, L. Douziech-Eyrolles, S. Cohen-Jonathan, M. Souce, P. Dubois, I. Chourpa, Int. J. Pharm. 302 (2005) 187.Google Scholar
  128. [128]
    L. Shen, P.E. Laibinis, T.A. Hatton, Langmuir 15 (1999) 447.Google Scholar
  129. [129]
    M.H. Sousa, F.A. Tourinho, J. Depeyrot, G.J. da Silva, M.C.F.L. Lara, J. Phys. Chem. B 105 (2001) 1168.Google Scholar
  130. [130]
    S. Sun, C.B. Murray, J. Appl. Phys. 85 (1999) 4325.Google Scholar
  131. [131]
    Y. Lu, X. Lu, B.T. Mayers, T. Herricks, Y. Xia, J. Solid State Chem. 181 (2008) 1530.Google Scholar
  132. [132]
    G. Carrot, D. Rutot-Houze, A. Pottier, P. Degée, J. Hilborn, P. Dubois, Macromolecules 35 (2002) 8400.Google Scholar
  133. [133]
    A. El Harrak, G. Carrot, J. Oberdisse, C. Eychenne-Baron, F. Boué, Macromolecules 37 (2004) 6376.Google Scholar
  134. [134]
    J. Pyun, J. Shijun, T. Kowalewski, G.D. Patterson, K. Matyjaszewski, Macromolecules 36 (2003) 5094.Google Scholar
  135. [135]
    J.H. Fendler, Chem. Mater. 8 (1996) 1616.Google Scholar
  136. [136]
    L.A. Harris, J.D. Goff, A.Y. Carmichael, J.S. Riffle, J.J. Harburn, T.G.S. Pierre, M. Saunders, Chem. Mater. 15 (2003) 1367.Google Scholar
  137. [137]
    Y. Zhang, N. Köhler, M. Zhang, Biomaterials 23 (2002) 1553.Google Scholar
  138. [138]
    M.D. Butterworth, L. Illum, S.S. Davis, Colloids Surf., A 179 (2001) 93.Google Scholar
  139. [139]
    O. Prucker, J. Rühe, Macromolecules 31 (1998) 592.Google Scholar
  140. [140]
    R. Jordan, N. West, A. Ulman, Y.M. Chou, O. Nuyken, Macromolecules 34 (2001) 5361.Google Scholar
  141. [141]
    C. Yee, M. Scotti, A. Ulman, H. White, M. Rafailovich, J. Sokolov, Langmuir 15 (1999) 4314.Google Scholar
  142. [142]
    M. Weck, J.J. Jackiw, R.R. Rossi, P.S. Weiss, R.H. Grubbs, J. Am. Chem. Soc. 121 (1999) 4088.Google Scholar
  143. [143]
    J. Lahann, R. Langer, Macromol. Rapid Commun. 22 (2001) 968.Google Scholar
  144. [144]
    M. Husemann, D. Mecerreyes, C.J. Hawker, L.J. Hedrick, R. Shah, N.L. Abbott, Angew. Chem., Int. Ed. 38 (1999) 647.Google Scholar
  145. [145]
    A.M. Schmidt, Macromol. Rapid Commun. 26 (2005) 93.Google Scholar
  146. [146]
    D. Farrell, S.A. Majetich, J.P. Wilcoxon, J. Phys. Chem. B 107 (2003) 11022.Google Scholar
  147. [147]
    H. Bönnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch, N. Waldoefner, N. Palina, H. Modrow, Inorg. Chim. Acta 350 (2003) 617.Google Scholar
  148. [148]
    Y.-P. Sun, X.-Q. Li, J. Cao, W.-X. Zhang, H.P. Wang, Adv. Colloid Interface Sci. 120 (2006) 47.Google Scholar
  149. [149]
    S. Peng, S. Sun, Angew. Chem. Int. Ed. 46 (2007) 4155.Google Scholar
  150. [150]
    C.-T. Chen, Y.-C. Chen, Anal. Chem. 77 (2005) 5912.Google Scholar
  151. [151]
    C.-Y. Lo, W.-Y. Chen, C.-T. Chen, Y.-C. Chen, J. Proteome Res. 6 (2007) 887.Google Scholar
  152. [152]
    C.-T. Chen, W.-Y. Chen, P.-J. Tsai, K.-Y. Chien, J.-S. Yu, Y.-C. Chen, J. Proteome Res. 6 (2007) 316.Google Scholar
  153. [153]
    C.-T. Chen, Y.-C. Chen, J. Mass Spectrom. 43 (2008) 538.Google Scholar
  154. [154]
    J.-C. Liu, P.-J. Tsai, Y.C. Lee, Y.-C. Chen, Anal. Chem. 80 (2008) 5425.Google Scholar
  155. [155]
    L. Sun, C. Zhang, L. Chen, J. Liu, H. Jin, H. Xu, L. Ding, Anal. Chim. Acta 638 (2009) 162.Google Scholar
  156. [156]
    C.-T. Chen, Y.-C. Chen, J. Biomed. Nanotechnol. 4 (2008) 73.Google Scholar
  157. [157]
    M.-A. Coletti-Previero, A. Previero, Anal. Biochem. 180 (1989) 1.Google Scholar
  158. [158]
    R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R.R. Bhond, M. Sastry, Langmuir 21 (2005) 10644.Google Scholar
  159. [159]
    Q. Sun, Q. Wang, B.K. Rao, P. Jena, Phys. Rev. Lett. 93 (2004) 186803.Google Scholar
  160. [160]
    J. Rivas, R.D. Sánchez, A. Fondado, C. Izco, A.J. GarcYa-Bastida, J. García-Otero, J. Mira, D. Baldomir, A. González, I. Lado, M.A. López-Quintela, S.B. Oseroff, J. Appl. Phys. 76 (1994) 6564.Google Scholar
  161. [161]
    E.E. Carpenter, C. Sangregorio, C.J. O’Connor, IEEE Trans. Magn. 35 (1999) 3496.Google Scholar
  162. [162]
    J.-I. Park, J. Cheon, J. Am. Chem. Soc. 123 (2001) 5743.Google Scholar
  163. [163]
    Z. Ban, Y.A. Barnakov, F. Li, V.O. Golub, C.J. O’Connor, J. Mater. Chem. 15 (2005) 4660.Google Scholar
  164. [164]
    Y. Shon, G.B. Dawson, M. Porter, R.W. Murray, Langmuir 18 (2002) 3880.Google Scholar
  165. [165]
    W. Wu, Q. He, H. Chen, J. Tang, L. Nie, Nanotechnology 18 (2007) 145609.Google Scholar
  166. [166]
    Q. Sun, B.V. Reddy, M. Marquez, P. Jena, C. Gonzalez, Q. Wang, J. Phys. Chem. C 111 (2007) 4159.Google Scholar
  167. [167]
    Y. Lu, Y. Yin, B.T. Mayers, Y. Xia, Nano Lett. 2 (2002) 183.Google Scholar
  168. [168]
    Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, S.K. Fu, Colloid Surf. A 26 (2005) 87.Google Scholar
  169. [169]
    L. Vroman, Science 184 (1974) 585.Google Scholar
  170. [170]
    X.L. Zhao, Y.L. Shi, Y.Q. Cai, S.F. Mou, Environ. Sci. Technol. 42 (2008) 1201.Google Scholar
  171. [171]
    X. Zhao, Y. Shi, T. Wang, Y. Cai, G. Jiang, J. Chromatogr. A 1188 (2008) 140.Google Scholar
  172. [172]
    W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62.Google Scholar
  173. [173]
    S.-Y. Chang, L. Liu, S.A. Asher, J. Am. Chem. Soc. 116 (1994) 6745.Google Scholar
  174. [174]
    T. Sen, A. Sebastianelli, I.J. Bruce, J. Am. Chem. Soc. 2006 (128) 7130.Google Scholar
  175. [175]
    Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 130 (2008) 28.Google Scholar
  176. [176]
    J.H. Scott, S.A. Majetich, Phys. Rev. B 52 (1995) 12564.Google Scholar
  177. [177]
    M.H. Teng, S.W. Tsai, C.I. Hsiao, Y.D. Chen, J. Alloys Compd. 434–435 (2007) 678.Google Scholar
  178. [178]
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, Science 307 (2005) 538.Google Scholar
  179. [179]
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4 (2005) 435.Google Scholar
  180. [180]
    J. Gao, H. Gu, B. Xu, Acc. Chem. Res. 42 (2009) 1097.Google Scholar
  181. [181]
    Y. Wang, J.F. Wong, X. Teng, X.Z. Lin, H. Yang, Nano Lett. 3 (2003) 1555.Google Scholar
  182. [182]
    S.S. Banerjee, D.-H. Chen, Chem. Mater. 19 (2007) 6345.Google Scholar
  183. [183]
    L.E. Euliss, S.G. Grancharov, S. O’Brien, Nano Lett. 3 (2003) 1489.Google Scholar
  184. [184]
    T. Pellegrino, L. Manna, S. Kudera, Nano Lett. 4 (2004) 703.Google Scholar
  185. [185]
    Y.-M. Huh, Y.-W. Jun, H.-T. Song, J. Am. Chem. Soc. 127 (2005) 12387.Google Scholar
  186. [186]
    Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J. Am. Chem. Soc. 127 (2005) 5732.Google Scholar
  187. [187]
    M. Auffan, L. Decome, J. Rose, Environ. Sci. Technol. 40 (2006) 436.Google Scholar
  188. [188]
    F. Bertorelle, C. Wilhelm, J. Roger, Langmuir 22 (2006) 5385.Google Scholar
  189. [189]
    M.P. Garcia, R. Miranda Parca, S. Braun Chaves, J. Magn. Magn. Mater. 293 (2005) 277.Google Scholar
  190. [190]
    Z.P. Chen, Y. Zhang, S. Zhang, J.G. Xia, J.W. Liu, K. Xu, N. Gu, Colloid Surf. A 316 (2008) 210.Google Scholar
  191. [191]
    C.O. Dálaigh, S.A. Corr, Y. Gunko, S.J. Connon, Angew. Chem. 119 (2007) 4407.Google Scholar
  192. [192]
    A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127 (2005) 12486.Google Scholar
  193. [193]
    J. Hu, G. Chen, I.M.C. Lo, Water Res. 39 (2005) 4528.Google Scholar
  194. [194]
    H.H. Yang, S.Q. Zhang, X.L. Chen, Z.X. Zhuang, J.G. Xu, X.R. Wang, Anal. Chem. 76 (2004) 1316.Google Scholar
  195. [195]
    X.L. Pu, Z.C. Jiang, B. Hu, H.B. Wang, J. Anal. Atom. Spectrom. 19 (2004) 984.Google Scholar
  196. [196]
    C.Z. Huang, B. Hu, J. Sep. Sci. 31 (2008) 760.Google Scholar
  197. [197]
    B.R. White, B.T. Stackhouse, J.A. Holcombe, J. Hazard. Mater. 161 (2009) 848.Google Scholar
  198. [198]
    S. Brice-Profeta, M.A. Arrio, E. Tronc, N. Menguy, I. Letard, C. Cartier dit Moulin, M. Nogues, C. Chaneac, J.P. Jolivet, P.H. Saintctavit, J. Magn. Magn. Mater. 288 (2005) 354.Google Scholar
  199. [199]
    N. De Jaeger, H. Demeye, R. Findy, R. Sneyer, J. Vanderdeelen, P. Van der Meeren, M. Laethem, Part. Part. Syst. Charact. 8 (1991) 179.Google Scholar
  200. [200]
    H.P. Klug, L.E. Alexander X-ray Diffraction Procedures, New York, Wiley, 1954, p. 512.Google Scholar
  201. [201]
    K. Inouye, R. Endo, Y. Otsuka, K. Miyashiro, K. Kaneko, T. Ishikawa, J. Phys. Chem. 86 (1982) 1465.Google Scholar
  202. [202]
    A. Ney, P. Poulopoulos, M. Farle, K. Baberschke, Phys. Rev. B 62 (2000) 11336.Google Scholar
  203. [203]
    S. Foner, Rev. Sci. Instrum. 30 (1959) 548.Google Scholar
  204. [204]
    D. Karabelli, C. Ûzüm, T. Shahwan, A.E. Eroğlu, T.B. Scott, K.R. Hallam, I. Lieberwirth, Ind. Eng. Chem. Res. 47 (2008) 4758.Google Scholar
  205. [205]
    S. Gao, Y. Shi, S. Zhang, K. Jiang, S. Yang, Z. Li, E. Takayama-Muromachi, J. Phys. Chem. C 112 (2008) 10398.Google Scholar
  206. [206]
    D. Zhang, X. Zhang, X. Ni, J. Song, H. Zheng, Cryst. Growth Des. 7 (2007) 2117.Google Scholar
  207. [207]
    R.N. Grass, E.K. Athanassiou, W.J. Stark, Angew. Chem. Int. Ed. 46 (2007) 4909.Google Scholar
  208. [208]
    T.M. Vickrey, J.A. Garcia-Ramirez, Sep. Sci. Technol. 15 (1980) 1297.Google Scholar
  209. [209]
    J. Gorse, T.C. Schunk, M.F. Burke, Sep. Sci. Technol. 19 (1984-85) 1073.Google Scholar
  210. [210]
    A.H. Latham, R.S. Freitas, P. Schiffer, M.E. Williams, Anal. Chem. 77 (2005) 5055.Google Scholar
  211. [211]
    J.H. Scott, S.A. Majetich, Phys. Rev. B 52 (1995) 12564.Google Scholar
  212. [212]
    R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoneg, Science 259 (1993) 346.Google Scholar
  213. [213]
    M. Todorovic, S. Schultz, J. Wong, A. Scherer, Appl. Phys. Lett. 74 (1999) 2516.Google Scholar
  214. [214]
    R.D. Shull, IEEE Trans. Magn. 29 (1993) 2614.Google Scholar
  215. [215]
    H.E. Horng, C.-Y. Hong, S.Y. Yang, H.C. Yang, J. Phys. Chem. Solids 62 (2001) 1749.Google Scholar
  216. [216]
    R. Zboril, M. Mashlan, D. Petridis, Chem. Mater. 14 (2002) 969.Google Scholar
  217. [217]
    K.A.J. Gschneidner, V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68 (2005) 1479.Google Scholar
  218. [218]
    S.W. Charles, J. Popplewell, Endeavour. 6 (1982) 153.Google Scholar
  219. [219]
    R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2th ed., Wiley-VCH, Weinheim, 2003.Google Scholar
  220. [220]
    U.T. Lam, R. Mammucari, K. Suzuki, N.R. Foster, Ind. Eng. Chem. Res. 47 (2008) 599.Google Scholar
  221. [221]
    L. LaConte, N. Nitin, G. Bao, Mater. Today 8 (2005) 32.Google Scholar
  222. [222]
    A.J. Rosengart, M.D. Kaminski, H. Chen, P.L. Caviness, A.D. Ebner, J.A. Ritter, J. Magn. Magn. Mater. 293 (2005) 633.Google Scholar
  223. [223]
    G. Iacob, O. Rotariu, N.J. Strachan, U.O. Hafeli, Biorheology 41 (2004) 599.Google Scholar
  224. [224]
    C.C. Berry, A.S.G. Curtis, J. Phys. D: Appl. Phys. 36 (2003) R198.Google Scholar
  225. [225]
    H. Gu, K. Xu, C. Xu, B. Xu, Chem. Commun. (2006) 941.Google Scholar
  226. [226]
    A. Hultgren, M. Tanase, C.S. Chen, G.J. Meyer, D.H. Reich, J. Appl. Phys. 93 (2003) 7554.Google Scholar
  227. [227]
    J.E. Smith, L. Wang, W. Tan, Trends Anal. Chem. 25 (2006) 848.Google Scholar
  228. [228]
    C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, B. Xu, J. Am. Chem. Soc. 126 (2004) 3392.Google Scholar
  229. [229]
    C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, J. Am. Chem. Soc. 126 (2004) 9938.Google Scholar
  230. [230]
    H.-H. Hsiao, H.-Y. Hsieh, C.-C. Chou, S.-Y. Lin, A.H.-J. Wang, K.-H. Khoo, J. Proteome. Res. 6 (2007) 1313.Google Scholar
  231. [231]
    T. Sen, A. Sebastianelli, I.J. Bruce, J. Am. Chem. Soc. 128 (2006) 7130.Google Scholar
  232. [232]
    K.A. Melzak, C.S. Sherwood, R.F.B. Turner, C.A. Haynes, J. Colloid Interface Sci. 181 (1996) 635.Google Scholar
  233. [233]
    J.-C. Liu, P.-J. Tsai, Y.C. Lee, Y.-C. Chen, Anal. Chem. 80 (2008) 5425.Google Scholar
  234. [234]
    A.K. Gupta, M. Gupta, Biomaterials 26 (2005) 3995.Google Scholar
  235. [235]
    E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, J. Magn. Magn. Mater. 289 (2005) 328.Google Scholar
  236. [236]
    J. Wu, Z. Ye, G. Wang, J. Yuan, Talanta 72 (2007) 1693.Google Scholar
  237. [237]
    R.W. Chantrell, A. Lyberatos, M. El-Hilo, K. O’Grady, J. Appl. Phys. 76 (1994) 6407.Google Scholar
  238. [238]
    J.L. Dormann, L. Spinu, E. Tronc, J.P. Jolivet, F. Lucari, F. D’Orazio, D. Fiorani, J. Magn. Magn. Mater. 183 (1998) L255.Google Scholar
  239. [239]
    S. Schneider, S. Rusconi, Biotechniques 21 (1996) 876.Google Scholar
  240. [240]
    M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi, Japan. J. Cancer Res. 89 (1998) 463.Google Scholar
  241. [241]
    D.C.F. Chan, D.B. Kirpotin, P.A. Bunn, J. Magn. Magn. Mater. 122 (1993) 374.Google Scholar
  242. [242]
    A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 100 (2005) 1.Google Scholar
  243. [243]
    J.A. Gladysz, Chem. Rev. 102 (2002) 3215.Google Scholar
  244. [244]
    B.M. Bhanage, M. Hrai, Catal. Rev. Sci. Eng. 43 (2001) 315.Google Scholar
  245. [245]
    A. Nait Ajjou, H. Alper, J. Am. Chem. Soc. 120 (1998) 1466.Google Scholar
  246. [246]
    N.E. Leadbeater, M. Marco, Chem. Rev. 102 (2002) 3217.Google Scholar
  247. [247]
    C.A. McNamara, M.J. Dixon, M. Bradley, Chem. Rev. 102 (2002) 3275.Google Scholar
  248. [248]
    C.E. Song, S.G. Lee, Chem. Rev. 102 (2002) 3495.Google Scholar
  249. [249]
    P.D. Stevens, J.D. Fan, H.M.R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 7 (2005) 2085.Google Scholar
  250. [250]
    C. Duanmu, I. Saha, Y. Zheng, B.M. Goodson, Y. Gao, Chem. Mater. 18 (2006) 5973.Google Scholar
  251. [251]
    R. Abu-Reziq, H. Alper, D.S. Wang, M.L. Post, J. Am. Chem. Soc. 128 (2006) 5279.Google Scholar
  252. [252]
    D. Guin, B. Baruwati, S.V. Manorama, Org. Lett. 9 (2007) 1419.Google Scholar
  253. [253]
    S.J. Ding, Y.C. Xing, M. Radosz, Y.Q. Shen, Macromolecules 39 (2006) 6399.Google Scholar
  254. [254]
    H.M.R. Gardimalla, D. Mandal, P.D. Stevens, M. Yen, Y. Gao, Chem. Commun. (2005) 4432.Google Scholar
  255. [255]
    Y. Zheng, C. Duanmu, Y. Gao, Org. Lett. 8 (2006) 3215.Google Scholar
  256. [256]
    N.T.S. Phan, C.S. Gill, J.V. Nguyen, Z.J. Zhang, C.W. Jones, Angew. Chem. Int. Ed. 45 (2006) 2209.Google Scholar
  257. [257]
    Y. Sun, X. Li, X.J. Cao, W. Zhang, H.P. Wang, Adv. Colloid Interface Sci. 120 (2006) 47.Google Scholar
  258. [258]
    P.G. Tratnyek, R.L. Johnson, Nanotoday 1 (2006) 44.Google Scholar
  259. [259]
    W.-X. Zhang, J. Nanopart Res. 5 (2003) 323.Google Scholar
  260. [260]
    D.W. Blowes, C.J. Ptacek, S.G. Benner, W.T. McRae Che, T.A. Bennett, R.W. Puls, J. Contam. Hydrol. 45 (2000) 123.Google Scholar
  261. [261]
    J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Bear, J.E. Amonette, K. Peacher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Environ. Sci. Technol. 39 (2005) 1221.Google Scholar
  262. [262]
    L. Li, M. Fan, R.C. Brown, J.V. Leeuwen, J. Wang, W. Wang, Y. Song, P. Zhang, Crit. Rev. Environ. Sci. Technol. 36 (2006) 405.Google Scholar
  263. [263]
    Y.-C. Chang, D.-H. Chen, Macromol. Biosci. 5 (2005) 254.Google Scholar
  264. [264]
    B. Zargar, H. Parham, A. Hatamie, Chemosphere 76 (2009) 554.Google Scholar
  265. [265]
    S.-Y. Mak, D.-H. Chen, Dyes and Pigments 61 (2004) 93.Google Scholar
  266. [266]
    A.A. Atia, A.M. Donia, W.A. Al-Amrani, Chem. Eng. J. 150 (2009) 55.Google Scholar
  267. [267]
    S.-H. Huang, M.-H. Liao, D.-H. Chen, Sep. Purif. Technol. 51 (2006) 113.Google Scholar
  268. [268]
    P. Li, D.E. Miser, S. Rabiei, R.T. Yadav, M.R. Hajaligol, Appl. Catal. B 43 (2003) 151.Google Scholar
  269. [269]
    L. Wang, Z. Yang, J. Gao, K. Xu, H. Gu, B. Zhang, X. Zhang, B. Xu, J. Am. Chem. Soc. 128 (2006) 13358.Google Scholar
  270. [270]
    H.Y. Lee, D.R. Bae, J.C. Park, H. Song, W.S. Han, J.H. Jung, Angew. Chem. Int. Ed. 48 (2009) 1239.Google Scholar
  271. [271]
    P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. Zhu, T. Chen, J. Hazard. Mater. 166 (2009) 821.Google Scholar
  272. [272]
    J.-F. Liu, Z.-S. Zhao, G.-B. Jiang, Environ. Sci. Technol. 42 (2008) 6949.Google Scholar
  273. [273]
    S.S. Banerjee, D.-H. Chen, J. Hazard. Mater. 147 (2007) 792.Google Scholar
  274. [274]
    J. Hu, I.M.C. Lo, G. Chen, Sep. Purif. Technol. 56 (2007) 249.Google Scholar
  275. [275]
    A.-F. Ngomsik, A. Bee, J.-M. Siaugue, V. Cabuil, G. Cote, Water Res. 40 (2006) 1848.Google Scholar
  276. [276]
    S.-H. Huang, D.-H. Chen, J. Hazard. Mater. 163 (2009) 174.Google Scholar
  277. [277]
    W. Yantasee, C.L. Warner, T. Sangvanich, R.S. Addleman, T.G. Carter, R.J. Wiacek, G.E. Fryxell, C. Timchalk, M.G. Warner, Environ. Sci. Technol. 41 (2007) 5114.Google Scholar
  278. [278]
    P. Wu, Z. Xu, Ind. Eng. Chem. Res. 44 (2005) 816.Google Scholar
  279. [279]
    S.P. Mulvaney, H.M. Mattoussi, L.J. Whitman, Biotechniques 36 (2004) 602.Google Scholar
  280. [280]
    N. Gaponik, I.L. Radtchenko, G.B. Sukhorukov, A.L. Rogach, Langmuir 20 (2004) 1449.Google Scholar
  281. [281]
    D.S. Wang, J.B. He, N. Rosenzweig, Z. Rosenzweig, Nano Lett. 4 (2004) 409.Google Scholar
  282. [282]
    L. Levy, Y. Sahoo, K.S. Kim, E.J. Bergey, P.N. Prasad, Chem. Mater. 14 (2002) 3715.Google Scholar
  283. [283]
    V. Salgueirino-Maceira, M.A. Correa-Duarte, M. Spasova, L.M. Liz-Marzan, M. Farle, Adv. Funct. Mater. 16 (2006) 509.Google Scholar
  284. [284]
    T.R. Sathe, A. Agrawal, S.M. Nie, Anal. Chem. 78 (2006) 5627.Google Scholar
  285. [285]
    C. Moser, T. Mayr, I. Klimant, Anal. Chim. Acta 558 (2006) 102.Google Scholar
  286. [286]
    P.S. Eastman, W.M. Ruan, M. Doctolero, R. Nuttall, G. De Feo, J.S. Park, J.S.F. Chu, P. Cooke, J.W. Gray, S. Li, F.Q.F. Chen, Nano Lett. 6 (2006) 1059.Google Scholar
  287. [287]
    M. Nichkova, D. Dosev, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Biochem. 369 (2007) 34.Google Scholar
  288. [288]
    A. Loudet, K. Burgess, Chem. Rev. 107 (2007) 4891.Google Scholar
  289. [289]
    M. Maier, H. Fritz, M. Gerster, J. Schewitz, E. Bayer, Anal. Chem. 70 (1998) 2197.Google Scholar
  290. [290]
    K. Turney, T.J. Drake, J.E. Smith, W. Tan, W.W. Harrison, Rapid Commun. Mass Spectrom. 18 (2004) 2367.Google Scholar
  291. [291]
    H.H. Yang, S.Q. Zhang, X.L. Chen, Z.X. Zhuang, J.G. Xu, X.R. Wang, Anal. Chem. 76 (2004) 1316.Google Scholar
  292. [292]
    C.T. Chen, Y.C. Chen, Anal. Chem. 77 (2005) 5912.Google Scholar
  293. [293]
    S.V. Kolotilov, P.N. Boltovets, B.A. Snopok, V.V. Pavlishchuk, Theor. Exp. Chem. 42 (2006) 211.Google Scholar
  294. [294]
    P.R. Sudhir, H.F. Wu, Z.C. Zhou, Anal. Chem. 77 (2005) 7380.Google Scholar
  295. [295]
    J.K. Herr, J.E. Smith, C.D. Medley, D.H. Shangguan, W.H. Tan, Anal. Chem. 78 (2006) 2918.Google Scholar
  296. [296]
    B.N.Y. Vanderpuije, G. Han, V.M. Rotello, R.W. Vachet, Anal. Chem. 78 (2006) 5491.Google Scholar
  297. [297]
    Z.M. Saiyed, M. Parasramka, S.D. Telang, C.N. Ramchand, Anal. Biochem. 363 (2007) 288.Google Scholar
  298. [298]
    X.X. He, H.L. Huo, K.M. Wang, W.H. Tan, P. Gong, J. Ge, Talanta 73 (2007) 764.Google Scholar
  299. [299]
    P.C. Lin, M.C. Tseng, A.K. Su, Y.J. Chen, C.C. Lin, Anal. Chem. 79 (2007) 3401.Google Scholar
  300. [300]
    S.Y. Chang, N.Y. Zheng, C.S. Chen, C.D. Chen, Y.Y. Chen, C.R.C. Wang, J. Am. Soc. Mass Spectrom. 18 (2007) 910.Google Scholar
  301. [301]
    K. Moeller, J. Kobler, T. Bein, Adv. Funct. Mater. 17 (2007) 605.Google Scholar
  302. [302]
    K.J. Klabunde, Nanoscale Material in Chemistry, Wiley-Interscience, New York, 2001.CrossRefGoogle Scholar
  303. [303]
    Y.S. Lin, P.J. Tsai, M.F. Weng, Y.C. Chen, Anal. Chem. 77 (2005) 1753.Google Scholar
  304. [304]
    J.E. Smith, C.D. Medley, Z. Tang, D. Shangguan, C. Lofton, W. Tan, Anal. Chem. 79 (2007) 3075.Google Scholar
  305. [305]
    P.J. Robinson, P. Dunnill, M.D. Lilly, Biotechnol. Bioeng. 15 (1973) 603.Google Scholar
  306. [306]
    J.D. Li, Y.Q. Cai, Y.L. Shi, S.F. Mou, G.B. Jiang, J. Chromatogr. A 1139 (2007) 178.Google Scholar
  307. [307]
    F.J. López-Jiménez, S. Rubio, D. Pérez-Bendito, Anal. Chim. Acta 551 (2005) 142.Google Scholar
  308. [308]
    J. Li, X. Zhao, Y. Shi, Y. Cai, S. Mou, G. Jiang, J. Chromatogr. A 1180 (2008) 24.Google Scholar
  309. [309]
    L. Sun, C. Zhang, L. Chen, J. Liu, H. Jin, H. Xu, L. Ding, Anal. Chim. Acta 638 (2009) 162.Google Scholar
  310. [310]
    H. Parham, N. Rahbar, J. Pharm. Biomed. Anal. 50 (2009) 58.Google Scholar
  311. [311]
    Y.R. Song, S.L. Zhao, P. Tchounwou, Y.M. Liu, J. Chromatogr. A 1166 (2007) 79.Google Scholar
  312. [312]
    M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M. Ghambarian, R. Hassani, Anal. Chim. Acta 659 (2010) 172.Google Scholar
  313. [313]
    B. Zargar, H. Parham, A. Hatamie, Talanta 77 (2009) 1328.Google Scholar
  314. [314]
    M. Faraji, Y. Yamini, M. Rezaee, Talanta (in press, doi:10.1016/j.talanta.2010.01.023).Google Scholar
  315. [315]
    H. Parham, N. Rahbar, Talanta 80 (2009) 664.Google Scholar
  316. [316]
    Y. Sha, C. Deng, B. Liu, J. Chromatogr. A 1198–1199 (2008) 27.Google Scholar
  317. [317]
    Y. Liu, H. Li, J.-M. Lin, Talanta 77 (2009) 1037.Google Scholar
  318. [318]
    C. Huang, B. Hu, J. Sep. Sci. 31 (2008) 760.Google Scholar
  319. [319]
    C. Huang, B. Hu, Spectrochim. Acta Part B 63 (2008) 437.Google Scholar
  320. [320]
    J.S. Suleiman, B. Hu, H. Peng, C. Huang, Talanta 77 (2009) 1579.Google Scholar
  321. [321]
    G. Wulff, Angew. Chem. Int. Ed. 34 (1995) 1812.Google Scholar
  322. [322]
    B. Sellergren, Molecularly Imprinted Polymers Manmade Mimics of Antibodies and their Application in Analytical Chemistry, Elsevier, New York, 2001.Google Scholar
  323. [323]
    C.H. Lu, W.H. Zhou, B. Han, H.H. Yang, X. Chen, X.R. Wang, Anal. Chem. 79 (2007) 5457.Google Scholar
  324. [324]
    D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, D. Wang, J. Am. Chem. Soc. 129 (2007) 7859.Google Scholar
  325. [325]
    C. Ki, J. Chang, Macromolecules 39 (2006) 3415.Google Scholar
  326. [326]
    H. Yang, S. Zhang, F. Tang, Z. Zhuang, X. Wang, J. Am. Chem. Soc. 127 (2005) 1378.Google Scholar
  327. [327]
    C. Xie, B. Liu, Z. Wang, D. Gao, G. Guan, Z. Zhang, Anal. Chem. 80 (2008) 437.Google Scholar
  328. [328]
    H. Wang, W. Zhou, X. Yin, Z. Zhuang, H. Yang, X.R. Wang, J. Am. Chem. Soc. 128 (2006) 15954.Google Scholar
  329. [329]
    R.J. Ansell, K. Mosbach, Analyst 123 (1998) 1611.Google Scholar
  330. [330]
    Y. Li, X.F. Yin, F.R. Chen, H.H. Yang, Z.X. Zhang, X.R. Wang, Macromolecules 39 (2006) 4497.Google Scholar
  331. [331]
    C.J. Tan, H.G. Chua, K.H. Ker, Y.W. Tong, Anal. Chem. 80 (2008) 683.Google Scholar
  332. [332]
    X. Wang, L. Wang, X. He, Y. Zhang, L. Chen, Talanta 78 (2009) 327.Google Scholar
  333. [333]
    N. Kirsch, M.J. Whitcombe, in: M. Yan, O. Ramström (Eds.), Molecularly Imprinted Materials Science and Technology, Marcel Dekker, 2005, Chap. 5.Google Scholar
  334. [334]
    Z. Lu, Y. Qin, J. Fang, J. Sun, J. Li, F. Liu, W. Yang, Nanotechnology 19 (2008) 055602.Google Scholar
  335. [335]
    S.J. Son, J. Reichel, B. He, M. Schuchman, S.B. Lee, J. Am. Chem. Soc. 127 (2005) 7316.Google Scholar
  336. [336]
    Y. Deng, C. Deng, D. Yang, C. Wang, S. Fu, X. Zhang, Chem. Commun. (2005) 5548.Google Scholar
  337. [337]
    L. Limback, R. Bereiter, E. Müller, R. Krebs, R. Gälli, W.J. Stark, Environ. Sci. Technol. 42 (2008) 5828.Google Scholar

Copyright information

© Iranian Chemical Society 2010

Authors and Affiliations

  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations