Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Corresponding states theory and thermodynamic properties of liquid alkali metals

  • 95 Accesses

  • 5 Citations

Abstract

According to phenomenological scaling and the law of corresponding states, reduced coordinates F *-T *, where F* represents the reduced thermodynamic properties (enthalpy of vaporization, speed of sound, surface tension, saturated liquid density) and T * is the reduced temperature, are introduced for the prediction of the thermodynamic properties of alkali metals. Values of the thermodynamic properties from the melting point up to boiling point are correlated. It has been shown that the correlation between reduced thermodynamic properties, as well as with the reduced temperature, can be expressed as a unique straight-line plot with a linear correlation coefficient of 0.9998. The proposed correlation has a simple form for easy calculation, requires only the melting and boiling point parameters, which are usually easy to acquire, and can predict the thermodynamic properties from the melting temperature up to the boiling temperature accurately.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R.L. Rowley, Statistical Mechanics for Thermophysical Property Calculations, PTR Prentice Hall, Englewood Cliffs, NJ, 1994.

  2. [2]

    S. Ganesh Prakash, R. Ravi, R.P. Chhabra, Chem. Phys. 302 (2004) 149.

  3. [3]

    J.S. Rowlinson, F.S. Swinton, Liquids and Liquid Mixtures, 3rd ed., Butterworths, London, 1982.

  4. [4]

    T.W. Leland, P.S. Chappelear, Ind. Eng. Chem. 60 (1968) 15.

  5. [5]

    R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 2001.

  6. [6]

    A.D. Pasternak, Mater. Sci. Eng. 3 (1968) 65.

  7. [7]

    A.D. Pasternak, Mater. Phys. Chem. Liq. 3 (1972) 41.

  8. [8]

    T. Iida, R. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993.

  9. [9]

    N.B. Vargaftik, Y.K. Vinogradov, V.S. Yargin, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 3rd ed., Begell House, New York, 1996.

  10. [10]

    K.M. Watson, Ind. Eng. Chem. 35 (1943) 398.

  11. [11]

    L.W. Fish, J. Lielmezs, Ind. Eng. Chem. Fundam. 14 (1975) 248.

  12. [12]

    A.G. Meyra, V.A. Kuz, G.J. Zarragoicoechea, Fluid Phase Equilibria 218 (2004) 205.

  13. [13]

    E.H.P. Cordfunke, R.J.M. Konings, Thermochemical Data for Reactor Materials and Fission Products, North Holland Elsevier Science Pub. Co. Inc., New York, 1990.

  14. [14]

    E.A. Guggenheim, J. Chem. Phys. 13 (1945) 235.

  15. [15]

    J. Stephan, J. Ann. Phys. 29 (1988) 655.

  16. [16]

    R. Defay, I. Prigogine, A. Bellemans, Surface Tension and Adsorption, Longmans Green, London, 1966.

  17. [17]

    E. Eustathopoulos, B. Drevet, E. Ricci, J. Crystal Growth 191 (1998) 268.

  18. [18]

    B.J. Keene, Int. Mater. Rev. 38 (1993) 157.

  19. [19]

    J.H. Goldman, J. Nucl. Mater. 125 (1984) 86.

  20. [20]

    J. Bohdansky, H.J.J. Shins, J. Inorg. Nucl. Chem. 29 (1967) 2172.

  21. [21]

    A. Tegetmeier, A. Cröll, K.W. Benz, J. Crystal Growth 141 (1994) 451.

  22. [22]

    D.L. Beke, G. Erdelyi, F.J. Kedves, J. Phys. Chem. Solids 42 (1981) 163.

  23. [23]

    R.P. Chhabra, High Temp.-High Press 23 (1991) 569.

  24. [24]

    M.H. Ghatee, High Temp. -High Press 26 (1994) 507.

  25. [25]

    R. M. Digilov, Int. J. Thermophys. 23 (2002) 1381.

  26. [26]

    R.W. Oshe, Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific Publications Ltd., Oxford, UK, 1985.

  27. [27]

    R.E. Berg, M.R. Moldover, S. Rabinovich, A. Voronel, J. Phys. (F): Met. Phys. 17 (1987) 1861.

  28. [28]

    PI. Bystrov, D.N. Kagan, G.A. Krechetova, E.E. Shpil’rain, Liquid-Metal Coolants for Heat Pipes and Power Plants, V.A. Kirillin, Hemisphere Pub. Corp., New York, 1990.

  29. [29]

    M.Z. Faizullin, Fluid Phase Equilib. 211 (2003) 75.

  30. [30]

    M.H. Ghatee, Fluid Phase Equilib. 170 (2000) 1.

  31. [31]

    A.V. Grosse, J. Inorg. Chem. 26 (1964) 1349.

  32. [32]

    H.A. Papazian, Scr. Metall. 18 (1984) 1401.

  33. [33]

    H.A. Papazian, High Temp. Sci. 18 (1984) 19.

  34. [34]

    B.C. Allen, in Liquid Metals, Chemistry and Physics, Marcel Dekker, New York, 1972.

  35. [35]

    L.S. Bartell, J. Phys. Chem. 99 (1995) 1080.

  36. [36]

    R.W. Ohse, J.F. Babelot, J. Magill, M. Tetenbaum, J. Pure Appl. Chem. 57 (1985) 1407.

  37. [37]

    W.M. Shyu, K.S. Singwi, M.P. Tosi, Phys. Rev. B 3 (1971) 237

Download references

Author information

Correspondence to M. H. Mousazadeh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mousazadeh, M.H., Khanchi, A. & Ghanadi Marageh, M. Corresponding states theory and thermodynamic properties of liquid alkali metals. JICS 3, 22–31 (2006). https://doi.org/10.1007/BF03245785

Download citation

Keyword

  • Corresponding states
  • Alkali metals
  • Thermodynamic properties