Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Predictive thermochemistry and phase equilibria of slags

Abstract

It is well understood that the efficient recovery of values by pyrometallurgical processing of ores requires control of the slag chemistry. In an effort to improve the understanding of slags, a thermodynamic database on subsystems of the CaO-MgO-Fe-O-Al2O3-SiO2 system has been generated through critical assessment of the literature. Data for connecting systems of specific industrial interest are being added. The data can be combined using well-established thermodynamic principles to make calculations on the multicomponent systems of practical interest. Following a description of the calculations, this article illustrates specific applications of thermodynamic modeling to the extraction of copper, nickel, and precious metals; zinc extraction; purification of pig iron; meltdown in nuclear reactors; hot corrosion; and pollution control.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T.I. Barry and T.G. Chart, “New Approach to Materials Design: Calculated Phase Equilibria for Composition and Structural Control,” Research and Development of High Temperature Materials for Industry, ed. E. Bullock (New York: Elsevier Applied Science, 1989), pp. 565–592.

  2. 2.

    L. Kaufman, ed., User Applications of Phase Diagrams (Materials Park, OH: ASM International, 1987).

  3. 3.

    I. Ansara and B. Sundman, “The Scientific Group Thermodata Europe,” Computer Handling and Dissemination of Data, ed. P.S. Glaeser (Paris: CODATA, 1987), pp. 154–158.

  4. 4.

    O. Redlich and A.T. Kister, “Algebraic Representation of Thermodynamic Properties and Classification of Solutions,” Ind. Eng. Chem., 40 (1948), pp. 345–348.

  5. 5.

    M.L. Kapoor, G.M. Mehrota, and M.G. Frohberg, “The Calculation of Thermodynamic Properties of Liquid Binary Silicate Systems,” Arch. Eisenhutt., 45 (1974), pp. 663–669.

  6. 6.

    H. Gaye and J. Welfringer, “Modelling of the Thermodynamic Properties of Complex Metallurgical Slags,” Second International Symposium on Metallurgical Slags and Fluxes, ed. H.A. Fine and D.R. Gaskell (Warrendale, PA: TMS, 1984), pp. 357–375.

  7. 7.

    M. Hillert et al., “A Thermodynamic Sublattice Model for Molten Solutions with Different Tendency to Ionization,” Metall. Trans., 16A (1985), pp. 261–266.

  8. 8.

    F. Sommer, “Association Model for the Description of the Thermodynamic Functions of Liquid Alloys,” Z. Metallkunde, 73 (1982), pp. 72–76.

  9. 9.

    Y.-Y. Chuang and Y.A. Chang, “Extension of the Associated Solution Model to Ternary Metal-Sulphur Melts: Cu-Ni-S,” Metall. Trans., 13B (1982), pp. 379–385.

  10. 10.

    X. Wang, M. Hillert, and B. Sundman, “A Thermodynamic Evaluation of the Al2O3-CaO-SiO2 System,” Report TRITA-MAC-0407 (Stockholm, Sweden: Royal Institute of Technology, 1989).

  11. 11.

    Y. Dessureault and A.D. Pelton, “Contribution to the Quasichemical Model of Reciprocal Molten Salt Solutions,” J. Chim. Phys., 88 (1991) pp. 1811–1830.

  12. 12.

    A.D. Pelton and M. Blander, “Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasi-Chemical Approach Applied to Silicate Slags,” Metall. Trans, 17B (1986), pp. 805–815.

  13. 13.

    M. Hillert, B. Jansson, and B. Sundman, “Application of the Compound Energy Model to Oxide Systems,” Z. Metallkunde, 79 (1988), pp. 81–87.

  14. 14.

    T.I. Barry, A.T. Dinsdale, J.A. Gisby, B. Hallstedt, M. Hillert, B. Jansson, S. Jonsson, B. Sundman, and J.R. Taylor, “The Compound Energy Model for Ionic Solutions with Application to Solid Oxides,” J. Phase Equilibria, 13 (1992), pp. 458–475.

  15. 15.

    R.H. Davies et al., “MTDATA—The NPL Databank for Metallurgical Thermochemistry,” User Aspects of Phase Diagrams, ed. F.H. Hayes (London: Institute of Metals, 1991), pp. 140–152.

  16. 16.

    R.H. Davies et al., “Application of MTDATA to the Modeling of Multicomponent Equilibria,” High Temp. Science, 26 (1990), pp. 251–262.

  17. 17.

    B. Jansson, “Evaluation of Parameters in Thermochemical Models using Different Types of Experimental Data Simultaneously,” Report TRITA-MAC-0234 (Stockholm, Sweden: Royal Institute of Technology, 1984).

  18. 18.

    H.-L. Lukas, E.Th. Henig, and B. Zimmermann, “Optimization of Phase Diagrams by a Least Square Method Using Simultaneously Different Types of Data,” CALPHAD, 1 (1977), p. 225.

  19. 19.

    B. Sundman, “An Assessment of the Fe-O System,” J. Phase Equilibria, 12 (1991), pp. 127–140.

  20. 20.

    A.T. Dinsdale, “SGTE Data for Pure Elements,” CALPHAD, 15 (1991), pp. 317–425.

  21. 21.

    B. Hallstedt, “An Assessment of the CaO-Al3O3 System,” Report TRITA-MAC 0380 (Stockholm, Sweden: Royal Institute of Technology, 1989).

  22. 22.

    D.A.R. Kay and J. Taylor, “Activities of Silica in the Lime-Alumina-Silica System,” Trans. Faraday Soc., 56 (1960), pp. 1372–1386.

  23. 23.

    M. Hillert et al., “A Reevaluation of the Rankinite Phase in the CaO-SiO2 System,” CALPHAD, 15 (1991), pp. 53–58.

  24. 24.

    _J.A. Gisby, unpublished work.

  25. 25.

    F.J. Klug, S. Prochazka, and R.H. Doremus, “Alumina-Silica Phase Diagram in the Mullite Region,” J. Amer. Ceram. Soc., 70 (1987), pp. 750–759.

  26. 26.

    R.A. Angel and C.T. Prewitt, “Crystal Structure of Mullite: A Re-Examination of the Average Structure,” Amer. Mineral., 71 (1986), pp. 1476–1482.

  27. 27.

    E.M. Levin, C.R. Robins, and H.F. McMurdie, Phase Diagrams for Ceramists (Cincinnati, OH: American Ceramic Society, 1964), Figures 630–639.

  28. 28.

    A.C. Turnock and H.P. Eugster, “Fe-Al Oxides: Phase Relationships Below 1000°C,” J. Petrol., 3 (1962), pp. 533–565.

  29. 29.

    A.T. Dinsdale et al., “Computations using MTDATA of Metal-Matte-Slag-Gas Equilibria,” Computer Software in Chemical and Extractive Metallurgy (Oxford, U.K.: Pergamon Press, 1989), pp. 59–74.

  30. 30.

    J.R. Taylor and A.T. Dinsdale, “Application of the Calculations of Phase Equilibria to the Pyrometallurgical Extraction from Sulphide Ores,” User Aspects of Phase Diagrams, ed. F.H. Hayes (London: Institute of Metals, 1991), pp. 209–224.

  31. 31.

    A.O. Adami, G.R. Firkin, and A.W. Robson, “Treatment of Complex Materials and Residues in the Imperial Smelting Process,” Complex Metallurgy ’78, ed. M.J. Jones (London: IMM, 1978), pp. 36–42.

  32. 32.

    R.G.K. Ball et al., “The Calculation of Phase Equilibria in Core-Concrete Systems,” J. Nucl. Mat., to be published.

  33. 33.

    K. Natesean, “Kinetic Boundary,” High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: NACE, 1983), pp. 336–344.

Download references

Author information

Correspondence to Thomas I. Barry Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barry, T.I., Dinsdale, A.T. & Gisby, J.A. Predictive thermochemistry and phase equilibria of slags. JOM 45, 32–38 (1993). https://doi.org/10.1007/BF03223284

Download citation

Keywords

  • Gibbs Energy
  • Liquid Iron
  • Excess Gibbs Energy
  • National Physical Laboratory
  • Tridymite