Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The oxidation and protection of gamma titanium aluminides

Abstract

The excellent density-specific properties of the gamma class of titanium aluminides make them attractive for intermediate-temperature (600–850 °C) aerospace applications. The oxidation and embrittlement resistance of these alloys is superior to that of the α2 and orthorhombic classes of titanium aluminides. However, since gamma alloys form an intermixed Al2O3TiO2 scale in air rather than the desired continuous Al2O3 scale, oxidation resistance is inadequate at the high end of this temperature range (i.e., greater than 750–800°C). For applications at such temperatures, an oxidation-resistant coating will be needed; however, a major drawback of the oxidation-resistant coatings currently available is severe degradation in fatigue life by the coating. A new class of oxidation-resistant coatings based in the Ti-Al-Cr system offers the potential for improved fatigue life.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y.W. Kim and F.H. Froes, High Temperature Aluminides and Intermetallies, ed. S.H. Whang et al. (Warrendale, PA: TMS, 1990), p. 465.

  2. 2.

    M. Yamaguchi, Titanium ′92, ed. F.H. Froes and I. Caplan (Warrendale, PA: TMS, 1993), p. 959.

  3. 3.

    S.-C. Huang, U.S. patent 4,879,092 (1989).

  4. 4.

    U.R. Kattner, J.-C. Lin, and Y.A. Chang, Met. Trans. A, 23A (1992), p. 2081.

  5. 5.

    G.H. Meier et al., Oxidation of High-Temperature Intermetallies, ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1988), p. 185.

  6. 6.

    S. Becker et al., Ox. Met., 38 (5/6) (1992), p. 425.

  7. 7.

    K. Maki et al., Mat. Sci. and Eng., A153 (1992), p. 591.

  8. 8.

    S.A Kekare, D.K. Shelton, and P.B. Aswath, Mat. Res. Soc. Symp. Proc., vol. 288 (Pittsburgh, PA: MRS, 1993), p. l025.

  9. 9.

    Y. Shida and H. Anada, Mat. Trans., JIM, 35 (9) (1994), p. 623.

  10. 10.

    A. Rahmel, W.J. Quadakkers, and M. Schutze, Materials and Corrosion, 46 (1995), p. 281.

  11. 11.

    V.V. Samokhval, P.A. Poleshuk, and A.A. Vecher, Russ. J. Phys. Chem., 45 (8) (1971), p. 1174.

  12. 12.

    M. Hoch and R.J. Usell, Jr., Met. Trans., 2 (1971), p. 2627.

  13. 13.

    N.S. Jacobson, M.P. Brady, and G.M. Mehrotra, “Twin Knudsen Cell Measurements of Aluminum Activities in TiAl Alloys,” Electrochemical Society Extended Abstracts, 188th Meeting of the Electrochemical Society (Pennington, NJ: the Electrochemical Society, 1995).

  14. 14.

    M. Eckert etal., Ber. Bunsenges. Phys. Chem., 100 (4) (1996), p. 418.

  15. 15.

    K.I. Luthra, Ox. Met., 36 (5/6) (1991), p. 475.

  16. 16.

    A. Rahmel and P.J. Spencer, Ox. Met., 35 (1/2) (1991), p. 53.

  17. 17.

    X.I.. Li et al., Acta Metall. Mater., 40 (11) (1992), p. 3149.

  18. 18.

    M.-X. Zhang et al., Scripta Met. Mater., 27 (1992), p. 1361.

  19. 19.

    G.P. Kelkar and A.H. Carim, J. Am. Ceram. Soc., 78 (3) (1995), p. 572.

  20. 20.

    Y. Chen, D.J. Young, and B. Gleeson, Materials Letters, 22 (1995), p. 125.

  21. 21.

    W.E. Dowling, Jr. and W.T. Donlon, Scripta Met. et Mater., 27 (1992), p. 1663.

  22. 22.

    R W. Beye and R. Gronsky, Acta Met. et Mater., 42 (1994), p. 1373.

  23. 23.

    N. Zheng et al., Scripta Met. et Mater., 33 (1995), p. 47.

  24. 24.

    Y.F. Cheng et al., Scripta Materialia, 34 (5) (1996), p. 707.

  25. 25.

    F. Dettenwanger et al., “Development and Microstructure of the Al-Depleted Layer of Oxidized TiAl,” Materials and Corrosion, in press.

  26. 26.

    E.H. Copland, B. Gleeson, and D.J. Young, “Factors Affecting the Sub-Surface Formation of a TixAltOz Phase During Oxidation of ψ-TiAl Based Alloys,” Proceedings of the 13th International Corrosion Congress (Melbourne, Australia: Int. Corr. Council, 1996).

  27. 27.

    N.S. Choudhury, H.C. Graham, and J.W. Hinze, Properties of High Temperature Alloys, ed. Z.A. Fouroulis and F.S. Pettit (Pennington, NJ: the Electrochemical Society, 1976), p. 668.

  28. 28.

    F. Dettenwanger et al., Mat. Res. Soc. Symp., vol. 364 (1995), p. 981.

  29. 29.

    J.M. Rakowski et al., Scripta Met. et Mater., 33 (1995), p. 997.

  30. 30.

    N. Zheng et al., Ox. Met., 44 (5/6) (1995), p. 477.

  31. 31.

    R.A. Perkins, K.T. Chiang, and G.H. Meier, Scripta Met., 21 (1987), p. 1505.

  32. 32.

    T.A. Wallace et al., Environmental Effects on Advanced Materials, ed. R.H. Jones and R.E. Ricker (Warrendale, PA: TMS, 1991), p. 79.

  33. 33.

    Y-W. Kim, Mat. Res. Soc. Symp. Proc., vol. 213 (Pittsburgh, PA: MRS, 1991), p. 777.

  34. 34.

    D.W. McKee and S.C. Huang, Corrosion Science, 33 (12) (1992), p. 1899.

  35. 35.

    B.G. Kim, G.M. Kim, and C.J. Kim, Scripta Met. et Mater., 33 (7) (1995), p. 1117.

  36. 36.

    J. Doychak, Intermetallic Compounds, ed. J.H. Westbrook and R.I. Fleischer (New York: John Wiley & Sons Ltd. 1994), p. 977.

  37. 37.

    J.C. Schaeffer, C.M. Austin, and F. Kaempf, Gamma Titanium Aluminides, ed. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), p. 71.

  38. 38.

    M. Yoshihara, K. Miura, and Y.-W. Kim, Gamma Titanium Aluminides, ed. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), p. 93.

  39. 39.

    Y. Shida and H. Anada, Ox. Met., 45 (1/2) (1996), p. 197.

  40. 40.

    I.E. Locci et al., “Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704°C in Air,” submitted to Scripta Mater.

  41. 41.

    W.J. Brindley, unpublished research.

  42. 42.

    Y.-W. Kim, JOM, 46 (7) (1994) p. 30.

  43. 43.

    S. Jain and J.R. Roessler, U.S. patent 5,296,056 (1994).

  44. 44.

    M. Schutze and M. Schmitz-Niederau, Gamma Titanium Aluminides, ed. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), p. 83.

  45. 45.

    J.I. Smialek et al., Mat. Res. Soc. Symp., vol. 364 (1995), p. 1273 (1995).

  46. 46.

    G.H. Meier, “Research on Oxidation and Embrittlement of Intermetallic Compounds in the U.S.,” to be published in Materials and Corrosion.

  47. 47.

    W.J. Brindley et al., HITEMP Review-1994, NASA CP-10146, vol. II, paper 44 (1994).

  48. 48.

    A.H. Rosenberger, B.D. Worth, and S.J. Balsone, “Environmental Effects on the Fatigue Crack Growth of Gamma Titanium Aluminides,” to be published in the proceedings of Sixth International Fatigue Congress, Berlin (May, 1996).

  49. 49.

    S.J. Balsone et al., Mat. Sci. and Eng., A192/193 (1995), p. 457.

  50. 50.

    S. Taniguchi, MRS Bulletin (October 1994), p. 31.

  51. 51.

    R. Streiff, Journal De Physique IV, Colloque C9, vol. 3 (1993), p. 17.

  52. 52.

    T. Shimizu, T. Iikubo, and S. Isobe, Mat. Sci. and Eng., A153 (1992), p. 602.

  53. 53.

    W.J. Brindley, J.I.. Smialek, and Q. Rouge, U.S. patent 5,116,690 (1992).

  54. 54.

    W.J. Brindley, J.I. Smialek, and M.A. Gedwill, HITEMP Review-1992, NASA CP-l0l04, vol. II, paper 41 (1992).

  55. 55.

    D.W. McKee, Mat. Res. Soc. Proc., 288 (1993), p. 953.

  56. 56.

    D.W. McKee and K.I. Luthra, Surface and Coatings Technology, 56 (1993), p. 109.

  57. 57.

    R. Streiff and S. Poize, High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: NACE, 1983), p. 591.

  58. 58.

    H. Mabuchi, T. Asai, and Y. Nakayama, Scripta Met., 23 (1989), p. 685.

  59. 59.

    J.I. Smialek, M.A. Gedwill, and P.K. Brindley, Scripta Met. et Mater., 24 (1990), p. 1291.

  60. 60.

    M. Yoshihara, T. Suzuki, and R. Tanaka, ISIJ International, 31 (10) (1991), p. 1201.

  61. 61.

    J.I. Smialek, Corrosion Science, 35 (5–8) (1993), p. 1199.

  62. 62.

    C. Leyens, M. Peters, and W.A. Kaysser, “Influence of Intermetallic Ti-Al Coatings on the Creep Properties of Timetal 1100,” submitted to Scripta Mater.

  63. 63.

    T.C. Munro and B. Gleeson, “The Deposition of Aluminide and Silicide Coatings on ψ-TiAl Using the Halide-Activated Pack Cementation Method,” Met. Mat. Trans., in press.

  64. 64.

    R.P. Skowronski, J. Am. Ceram. Soc., 77 (4) (1994), p. 1098.

  65. 65.

    W.C. Revelos and P.R. Smith, Met. Trans. A, 23A (1992), p. 587.

  66. 66.

    B. Cockeram and R.A. Rapp, Ox. Met., 45 (5/6) (1996), p. 427.

  67. 67.

    W.J. Brindley and P.A. Bartolotta, unpublished research.

  68. 68.

    R.A. Perkins and G.H. Meier, Proceedings of the Industry University Advanced Materials Conference II, ed. F. Smith (Golden, CO: Advanced Materials Institute, 1989), p. 92.

  69. 69.

    J.C. Schaeffe et al., GE Aircraft Engines final report, Naval Air Development Center contract N62269-90-C-0287 (1993).

  70. 70.

    R.I. McCarron et al., Titanium 1992, ed. F.H. Froes and I. Caplan (Warrendale, PA: TMS, 1993), p. 1971.

  71. 71.

    M.P. Brady, J.I.. Smialek, and F. Terepka, Scripta Met. Mater., 32 (10) (1995), p. 1659.

  72. 72.

    M.P. Brady, J.I. Smialek, and D.I. Humphrey, Mat. Res. Soc. Symp., vol. 364 (1995), p. 1309.

  73. 73.

    J.I. Klansky, J.P. Nic, and D.E. Mikkola, J. Mater. Res., 9 (1994), p. 255.

  74. 74.

    T.J. Jewett and M. Dahms, Z. Metallkunde, 87 (1996).

  75. 75.

    M.P. Brady et al., “The Role of Cr in Promoting Protective Alumina Scale Formation by ψ-Based Ti-Al-Cr Alloys: Part —Compatibility with Alumina and Oxidation Behavior in Oxygen,” to be published in Acta Met.

  76. 76.

    T.J. Jewett, B. Ahrens, and M. Daluns, “Phase Equilibria Involving the γ-L12 and TiAl2 Phases in the Ti-Al-Cr System,” Intermetallics, in press.

  77. 77.

    S.-C. Huang and E.I. Hall, Met. Trans. A, 22A (1991), p. 2619.

  78. 78.

    M.P. Brady, J.I. Smialek, and W.J. Brindley, submitted to U.S. patent office (1996).

  79. 79.

    F.H. Hayes, J. Phase Equilibria, 13 (1) (1992), p. 79.

Download references

Author information

Correspondence to Michael P. Brady Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brady, M.P., Brindley, W.J., Smialek, J.L. et al. The oxidation and protection of gamma titanium aluminides. JOM 48, 46–50 (1996). https://doi.org/10.1007/BF03223244

Download citation

Keywords

  • Fatigue
  • Fatigue Life
  • Scale Formation
  • Lave Phase
  • Coating Alloy