Advertisement

JOM

, Volume 46, Issue 12, pp 23–25 | Cite as

Recent advances in bismuth-based superconductors

  • U. Balachandran
  • A. N. Iyer
  • J. Y. Huang
  • R. Jammy
  • P. Haldar
  • J. G. HoehnJr.
  • G. Galinski
  • L. R. Motowidlo
Superconductor Research Summary

Abstract

Significant progress has been made in the development of high-critical-temperature (high-Tc) mono- and multifilament bismuth-based superconductors by the powder-in-tube (PIT) technique. High critical current density (Jc) has been achieved in both short- and long-length monofilament conductors. Jcs up to 1.2 × 104 A/cm2 were achieved in an 850 m long multifilament conductor. Pancake-shaped coils and test magnets, fabricated from long conductors, were characterized at various temperatures and applied magnetic fields. One such magnet containing 480 m of high-Tc tape generated a record-high field of 2.6 T at 4.2 K. Multifilament conductors appear to possess better mechanical properties and retain a higher percentage of their initial critical current under strain than monocore conductors, which is important for practical considerations. PIT processing of superconducting tapes with Ag-Al2O3 as the sheath material is perhaps another route to improve mechanical properties.

Keywords

Strain Tolerance Test Magnet High Critical Current Density Sheath Material Superconductor Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

erences

  1. 1.
    U. Balachandran et al., JOM, 45 (1993), p. 54.CrossRefGoogle Scholar
  2. 2.
    S.X. Dou et al., Supercond. Sci. Technol., 6 (1993), p. 297.Google Scholar
  3. 3.
    K. Sato et al., IEEE Trans. Mag., 27 (1991), p. 1231.Google Scholar
  4. 4.
    R. Flukiger et al., Appl. Supercond., 1 (1993), p. 709.Google Scholar
  5. 5.
    S. Jin, Processing of Long Lengths of Superconductors, ed. U. alachandran, et al. (Warrendale, PA: TMS, 1994), p. 3.Google Scholar
  6. 6.
    E.H. Hellstrom, MRS Bulletin, XVII (1992), p. 45.Google Scholar
  7. 7.
    K.H. Sandhage et al., JOM, 43 (1991), p. 21.CrossRefGoogle Scholar
  8. 8.
    P. Haldar et al., JOM, 44 (1992), p. 54.CrossRefGoogle Scholar
  9. 9.
    J. Tenbrink et al., IEEE Trans. Mag., 27 (1991), p. 1239.Google Scholar
  10. 10.
    G.N. Riley, Jr., Amer. Cer. Soc. Bull., 72 (1993), p. 91.Google Scholar
  11. 11.
    H. Maeda et al., Jpn. J. Appl. Phys., 27 (1988), p. L209.Google Scholar
  12. 12.
    P. Majewsky et al., Adv. Mater., 3 (1991), p. 488.Google Scholar
  13. 13.
    K. Schulze et al., Z. Metal, 81 (1990), p. 836.Google Scholar
  14. 14.
    B. Hong et al., J. Mater. Res., 73 (1990), p. 1965.Google Scholar
  15. 15.
    M. Takano et al., Jpn. J. Appl. Phys., 27 (1988), p. 1041.Google Scholar
  16. 16.
    L. Pierre et al., J. Appl. Phys., 68 (1990), p. 2296.Google Scholar
  17. 17.
    S.X. Dou et al., Phys. Rev. B, 40 (1989), p. 5266.Google Scholar
  18. 18.
    P. Krishnaraj et al., Physica C, 215 (1993), p. 305.Google Scholar
  19. 19.
    B. Sarkar et al., Mat. Res. Bull., 28 (1993), p. 263.Google Scholar
  20. 20.
    S.E. Dorris et al., Physica C, 212 (1993), p. 66.Google Scholar
  21. 21.
    K. Aota et al., Jpn. J. Appl. Phys., 28 (1989), p. L2196.Google Scholar
  22. 22.
    J.C. Grivel et al., Supercond. Sci. Technol., 6 (1993), p. 725.Google Scholar
  23. 23.
    A. Oota et al., Jpn. J. Appl. Phys., 28 (1989), p. L1171.Google Scholar
  24. 24.
    L.R. Motowidlo et al., Appl. Phys. Lett., 59 (1991), p. 736.Google Scholar
  25. 25.
    Y. Obst et al., Supercond. Sci. Technol., 4 (1991), p. 165.Google Scholar
  26. 26.
    Q. Li et al., Physica C, 217 (1993), p. 360.Google Scholar
  27. 27.
    P. Haldar et al., IEEE Trans. Appl. Supercond., 3 (1993), p. 1127.Google Scholar
  28. 28.
    J. Yau et al., J. Mater. Syn. Proc, 2 (1994), p. 45.Google Scholar
  29. 29.
    H. Mukai et al. (Paper presented at MRS Spring Meeting, San Francisco, CA, 27 April 1992).Google Scholar
  30. 30.
    L.R. Motowidlo et al. (Paper presented at MRS Spring Meeting, San Francisco, CA, 12 April 1993).Google Scholar
  31. 31.
    U. Balachandran et al., Appl. Supercond., 2 (1994), p. 251.Google Scholar
  32. 32.
    G. Reis, Cryogenics, 33 (1993), p. 609.Google Scholar
  33. 33.
    J. Lohle, Cryogenics, 33 (1993), p. 287.Google Scholar
  34. 34.
    J.W. Ekin, Materials at Low Temperatures, ed..R.P. Reed and A.F. Clark (Metals Park, OH: ASM, 1983), p. 494.Google Scholar
  35. 35.
    A. Otto, JOM, 45 (1993), p. 48.CrossRefGoogle Scholar
  36. 36.
    J.P. Singh et al., J. Mater. Res., 8 (1993), p. 2458.Google Scholar
  37. 37.
    Y. Mutoh et al., Jpn. J. Appl. Phys., 29 (1990), p. L1432.Google Scholar
  38. 38.
    N. Murayama et al., Jpn. J. Appl. Phys., 28 (1989), p. L1740.Google Scholar
  39. 39.
    J. Cai et al., Supercond. Sci. Technol., 5 (1992), p. 599.Google Scholar
  40. 40.
    J.E. Tkaczyk et al., IEEE Trans. Appl. Supercond., 3 (1993), p. 946.Google Scholar

Copyright information

© TMS 1994

Authors and Affiliations

  • U. Balachandran
    • 1
  • A. N. Iyer
    • 2
  • J. Y. Huang
    • 2
  • R. Jammy
    • 3
  • P. Haldar
    • 4
  • J. G. HoehnJr.
    • 4
  • G. Galinski
    • 4
  • L. R. Motowidlo
    • 4
  1. 1.Argonne National Laboratory (ANL)Argonne
  2. 2.ANL/Illinois Institute of Technology (IIT)USA
  3. 3.ANL/Northwestern UniversityUSA
  4. 4.Intermagnetics General Corporation (IGC)USA

Personalised recommendations