Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Applying texture analysis to materials engineering problems

Abstract

Textures in materials have been studied extensively since the 1930s following the pioneering work of Wassermann.1,2 The modern era of texture measurement started in 1949 with the development of the x-ray pole figure technique for texture measurement by Schultz.3 Finally, modern texture analysis was initiated with the publication by Bunge4 and Roe5 of a mathematical method of pole figure inversion, which is now used to calculate the orientation distribution function (ODF). This article cannot summarize such an extensive body of work, but it does endeavor to provide the background necessary to understand texture analysis; it also illustrates several applications of texture.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Wassermann, Texturen Metallischer Werkstoffe (Berlin: Springer, 1939).

  2. 2.

    G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, 2nd ed. (Berlin: Springer, 1962).

  3. 3.

    L.G. Schultz, “A Direct Method of Determining Preferred Orientation of a Flat Reflection Specimen Using a Geiger Counter X-Ray Spectrometer,“ J. Appl Phys., 20 (1949), pp. 1030–1036.

  4. 4.

    HJ. Bunge, “Zur Darstellung Allgemeiner Texturen,” Z. Metell., Bd. 56 (1965), pp. 872–874.

  5. 5.

    R.J. Roe, “Description of Crystallite Orientation in Polycrystalline Materials. III. General Solution to Pole Figure Inversion,” J. Appl. Phys., 36 (1965), pp. 2024–2031.

  6. 6.

    B.D. Cullity, Elements of X-Ray Diffraction, 2nd. ed. (Reading, MA: Addison-Wesley Publishing Co., 1978), pp. 295–321.

  7. 7.

    G. Gottstein and K. Lücke, eds., Texture of Materials, Proceedings of the Fifth International Conference on Texture of Materials, ICOTOM5 (New York: Springer-Verlag, 1978).

  8. 8.

    S. Nagashima, ed., Proceedings of the Sixth International Conference on Textures of Materials, ICOTOM6 (Tokyo: Iron and Steel Institute of Japan, 1981).

  9. 9.

    C.M. Brakman, P. Jongenburger, and E. Mittemeijer, eds., Proceedings of the Seventh International Conference on Textures of Materials, ICOTOM7 (Noordwijkerhout: Netherlands Society for Materials Science, 1984).

  10. 10.

    J.S. Kallend and G. Gottstein, eds., Eighth International Conference on Textures of Materials, ICOTOM8 (Warrendale, PA: TMS, 1988).

  11. 11.

    R. Penelle and C. Esling, eds., Ninth International Conference on Textures of Materials, ICOTOM9, Textures and Microstructures 14–18 (1991).

  12. 12.

    H.J. Bunge, ed., Textures of Materials, ICOTOM-10, Proceedings of the 10th International Conference on Textures of Materials (Aedermannsdorf, Switzerland: Trans Tech Publications, 1994), pp. 157–162.

  13. 13.

    H.-G. Brokmeier and H. Gertel, “Quantitative Phase Analysis in Textured Materials,” Advances and Applications of Quantitative Texture Analysis, ed. H.J. Bunge and C. Esling (Oberursel, Germany: DGM Informationsgesellschaft, 1991), pp. 289–298.

  14. 14.

    C.M. Brakman, “Application of the ODF to Residual Stress Analysis Problems of Textured Cubic Materials. Diffraction Strain Pole Figures,” Theoretical Methods of Texture Analysis, ed. H.J. Bunge (Oberursel, Germany: DGM Informationsgesellschaft, 1987), pp. 377–390.

  15. 15.

    H.J. Bunge, ed., Experimental Techniques of Texture Analysis (Oberursel, Germany: DGM Informationsgesellschaft, 1986).

  16. 16.

    H.J. Bunge, ed., Theoretical Methods of Texture Analysis (Oberursel, Germany: DGM Informationsgesellschaft, 1987).

  17. 17.

    H.J. Bunge, ed., Directional Properties of Materials (Oberursel, Germany: DGM Informationsgesellschaft, 1988).

  18. 18.

    H.J. Bunge and C. Esling, eds., Advances and Applications of Quantitative Texture Analysis (Oberursel, Germany: DGM Informationsgesellschaft, 1991).

  19. 19.

    H.J. Bunge, Texture Analysis in Materials Science (Boston, Butterworths, 1982).

  20. 20.

    H.J. Bunge and C Esling, eds., Quantitative Texture Analysis (Oberursel: Deutsche Gesellschaft fur Metallkunde, 1982).

  21. 21.

    H.-R. Wenk, ed., Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (New York: Academic Press, Inc., 1985).

  22. 22.

    R.H. Bragg and CM. Packer, “Quantitative Determination of Preferred Orientation,” J. Appl. Phys., 35 (1964), pp. 1322–1328.

  23. 23.

    H.J. Bunge and K.-H. Puch, “Principles of Texture Goniometer Measurement,” Z. Metallke., 75 (1984), pp. 124–132.

  24. 24.

    H. Bunge, “Experimental Techniques,” Quantitative Texture Analysis (Oberursel, Germany: Deutsche Gesellschaft fur Metallkunde, 1982), pp. 85–128.

  25. 25.

    Standard Method for Preparing Quantitative Pole Figures of Metals, ASTM Standard E81-63 (Philadelphia, PA: ASTM, 1974).

  26. 26.

    W.P. Chernock and P.A. Beck, “Analysis of Certain Errors in the X-Ray Reflection Method for the Quantitative Determination of Preferred Orientations,” J. Appl. Phys., 23 (1952), pp. 341–345.

  27. 27.

    F.C Phillips, The Use of Stereographic Projections in Structural Geology 3rd ed. (New York: Edward Arnold, 1971), p. 60.

  28. 28.

    S.S. Iyergar et al., “Analysis of Surface Layers and Thin Films by Low Incidence Angle X-Ray Diffraction,” Adv. in X-Ray Anal., 30 (1987), pp. 457–464.

  29. 29.

    J.J. Heizmann et al., “Low Incidence X-Ray Goniometry for Thin Films Texture Analysis,” Textures and Microstructures, 14–18 (1991), pp. 181–186.

  30. 30.

    J.J. Heizmann et al., “Texture Analysis of Thin Films and Surface Layers by Low Incidence Angle X-Ray Diffraction,” Adv. in X-Ray Anal., 32 (1989), pp. 285–292.

  31. 31.

    D.B. Knorr, “The Role of Texture on the Reliability of Aluminum-Based Interconnects,” Materials Reliability Issues in Microelectronics III, ed. K.P. Rodbell et al. (Pittsburgh, PA: MRS, 1993, Vol. 309), pp. 75–86.

  32. 32.

    J. A. Szpunar, “Texture and Neutron Diffraction,” Atomic Energy Rev., 142 (1976) pp. 199–261

  33. 33.

    P.I. Welch, “Neutron Diffraction Analysis,” Theoretical Methods of Texture Analysis, ed. H.J. Bunge (Oberursel, Germany: DGM Informationsgesellschaft, 1987), pp. 183–208.

  34. 34.

    H.G. Brokmeier, “Neutron Diffraction Texture Analysis,” Directional Properties of Materials (Oberursel, Germany: DGM Informationsgesellschaft, 1988), pp. 73–88.

  35. 35.

    J. Pospiech, K. Sztwertnia and F. Haeßner, “The Misorientation Distribution Function,” Textures and Micro-structures, 6 (1986), pp. 201–216.

  36. 36.

    H.J. Bunge and H. Weiland, “Orientation Correlation in Grain and Phase Boundaries,” Textures and Microstructures, 7 (1988), pp. 231–263.

  37. 37.

    H. Weiland, “The Determination of Long Range Misorientations in the Microstructure,” Acta Met., 40 (1992), pp. 1083–1090.

  38. 38.

    C.U. Nauer-Gerhardt and H.J. Bunge, “Orientation Determination by Optical Methods,” Theoretical Methods of Texture Analysis, ed. H.J. Bunge (Oberursel, Germany: DGM Informationsgesellschaft, 1987), pp. 125–142.

  39. 39.

    G.D. Köhlhoff, X. Sun, and K. Lücke, “The Optical Determination of Crystal Orientation,” in Ref. 10, pp. 183–188.

  40. 40.

    W.G. Fricke, Jr., and J.T. Ioannou, “A Practical Texture Measurement Instrument,” in Ref. 10, pp. 257–262.

  41. 41.

    H.J. Kopineck and H. Otten, “Texture Analyzer for On-Line rm-value Estimation,” Textures and Microstructures, 7 (1987), pp. 97–113.

  42. 42.

    P. Blandford and J.A. Szpunar, “On-Line X-ray Texture Measurement,” J. Nondestr. Eval., 12 (1993) pp. 21–29.

  43. 43.

    M. Spies and E. Schneider, “Nondestructive Analysis of the Deep-Drawing Behavior of Rolled Sheets with Ultrasonic Techniques,” Directional Properties of Materials (Oberursel, Germany: DGM Informationsgesellschaft, 1988).

  44. 44

    . R.C. Stiffler, M. Daly, and R.W. Wojnar, “Ultrasonic Determination of the Degree of Recrystallization in Aluminum Sheet Using Horizontally Polarized Shear Waves,” Non-Destructive Evaluation and Material Properties II, ed. P.K. Liaw et al. (Warrendale, PA: TMS, 1994), pp. 161–170.

  45. 45.

    H.J. Bunge, “Three Dimensional Texture Analysis,” Inter. Mat. Rev., 32 (1987), pp. 265–290.

  46. 46.

    J.S. Kallend et al., “Operational Texture Analysis,” Mater. Sci. Engr., A132 (1991), pp. 1–11.

  47. 47.

    K.K. Puch, H. Weirich, and H.J. Bunge, “A Program-System for a Computer-Controlled Texture Goniometer,” in Ref. 8, pp. 1213–1218.

  48. 48.

    H.R. Wenk and U.F. Kocks, “The Representation of Orientation Distributions,” Metall. Trans. A, 18A (1987), pp. 1083–1092.

  49. 49.

    J.E. Hatch, ed., Aluminum: Properties and Physical Metallurgy (Metals Park, OH: ASM, 1984), pp. 125–128.

  50. 50.

    J. Hirsch and J. Hasenclever, “Cube Texture and Earing Control in Al Sheet,” Proceedings of the 3rd International Conference on Aluminum Alloys (ICAA3) (Trondheim, Norway: Norwegian Institute of Technology, 1992), pp. 305–310.

  51. 51.

    K.D. Nelson, B.L. Adams, and W.G. Fricke, Jr., “Correlation of Earing in Hot Rolled 3004 Aluminum with the Crystallite Orientation Distribution Function,” in Ref. 10, pp. 1097–1102.

  52. 52.

    F. Barlat, S. Panchanadeeswaran, and O. Richmond, “Earing in Cup Drawing Face-Centered Cubic Single Crystals and Polycrystals,” Met. Trans. A, 22A (July 1991), pp. 1525–1533.

  53. 53.

    T.J. Rickert, “Earing and Textures in Austenitic Stainless Steel Type 304,“ in Ref. 12.

  54. 54.

    F. Barlat, “Crystallographic Texture, Anisotropic Yield Surfaces and Forming Limits of Sheet Metals,” Mat. Sci. and Eng., 91 (1987), pp. 55–72.

  55. 55.

    X.-H. Zeng and F. Barlat, “Effects of Texture Gradients on Yield Loci and Forming Limit Diagrams in Various Aluminum-Lithium Sheet Alloys,” accepted for publication in Met. and Mail. Trans. A.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knorr, D.B., Weiland, H. & Szpunar, J.A. Applying texture analysis to materials engineering problems. JOM 46, 32–36 (1994). https://doi.org/10.1007/BF03222580

Download citation

Keywords

  • Texture Analysis
  • Austenitic Stainless Steel
  • Neutron Diffraction
  • Pole Figure
  • Deep Drawing