Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Thermodynamics and Kinetics of film agglomeration

Abstract

Agglomeration is a common problem in all technological areas that depend on the integrity and continuity of films. The origin of agglomeration of thin films has been traced to its thermodynamic roots. This article demonstrates that both stress and surface tension effects play major roles in determining the overall stability of a film to agglomeration. However, complete agglomeration—uncovering the substrate and the formation of well-separated islands—will only occur if the operative surface and interfacial tensions favor dewetting or partial wetting. The formation of holes and/or hillocks may be favored by the commonplace large stresses in a film. Such holes and/or hillocks can provide a means of stress relaxation in the film.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. Kane, J.P. Spratt, and L. W. Herschinger, J. Appl. Phys., 37 (1966), p. 2085.

  2. 2.

    P. Scharnhorst, Surf. Sci., 15 (1969), p. 380.

  3. 3.

    H. Jaeger, P. Mercer, and G. Sherwood, Surf. Sci., 13 (1969), p. 502.

  4. 4.

    R.E. Hummel et al., Thin Solid Films, 78 (1981), p. 1.

  5. 5.

    D.C. Agrawal and R. Raj, Acta Metall., 37 (1989), p. 2035.

  6. 6.

    C.M. Kennefick and R. Raj, Acta Metall., 37 (1989), p. 2947.

  7. 7.

    T. Nolan, R. Beyers, and R. Sinclair, Mat. Res. Soc. Symp. Proc., 202 (1991), p. 95.

  8. 8.

    Z.G. Xiao et al., Mat.Res. Soc. Symp. Proc., 202 (1991), p. 101.

  9. 9.

    S.K. Sharma and J. Spitz, Thin Solid Films, 65 (1980), p. 339.

  10. 10.

    A.D. Paddock and J.R. Black, J. Electrochem. Soc., 115 (1968), p. 70C.

  11. 11.

    W.B. Pennebaker, J. Appl. Phys., 40 (1969), p. 394.

  12. 12.

    V.A. Mazur and M.G. Goldiner, Phys. Lett., A137 (1989), p. 69.

  13. 13.

    H.L. Caswell, J.R. Priest, and J.R. Budo, J. Appl Phys., 34 (1963), p. 3261.

  14. 14.

    F. d'Heurle, L. Berenbaum, and R. Rosenberg, Trans. Met. Soc. AIME, 242 (1968), p. 502.

  15. 15.

    C. Herring, Structure and Properties of Solid Surfaces, ed. R. Gomer and C.S. Smith (Chicago, IL: University of Chicago Press, 1952).

  16. 16.

    M.G. Goldineret al., Sov. Phys. Chem. of Mater. Process., 4 (1978), p. 112.

  17. 17.

    E. Bauer, Z. Kristallogr., 110 (1958), p. 372.

  18. 18.

    A.N. Frumkin, Sov. J. Phys. Chem., 12 (1938), p. 377.

  19. 19.

    A.N. Frumkin and A. Gorodetskaya, Sov. J. Phys. Chem., 12 (1938), p. 511.

  20. 20.

    J.I. Frenkel, Kinetic Theory of Liquids (Leningrad: Nauka, 1975).

  21. 21.

    W.W. Mullins, Acta Metall., 6 (1958), p. 414.

  22. 22.

    F. Brochard-Wyart and J. Daillant, Can. J. Phys., 68 (1990), p. 1084.

  23. 23.

    W.W. Mullins, Metal Surfaces: Structure Energetics and Kinetics(Metals Park, OH: Am. Soc. Metals, 1963).

  24. 24.

    S.Y. Lee, R.E. Hummel, and R.T. DeHoff, Thin Solid Films, 149 (1987), p. 29.

  25. 25.

    F.Y. Genin, Ph.D. Dissertation-Carnegie Mellon University (1991).

  26. 26.

    W.W. Mullins, J. Appl Phys., 28 (1957), p. 260.

  27. 27.

    D.J. Srolovitz and S.A. Safran, J. Appl. Phys., 60 (1986), p. 247.

  28. 28.

    K.T. Miller, F.F. Lange, and D.B. Marshall, J. Mater. Res., 5 (1990), p. 151.

  29. 29.

    S.A. Hackney, Scripta Metall., 22 (1988), p. 1273.

  30. 30.

    D.J. Srolovitz and S.A. Safran, Phil Mag. A, 52 (1985), p. 793.

  31. 31.

    L.B. Freund and Y. Hu, U.S. Dept. of Defense Tech. Rep. AD-A193 461/1/XAB (1988).

  32. 32.

    C. Liang and J.W. Hutchinson, unpublished research (1991).

  33. 33.

    W. Yang and D.J. Srolovitz, unpublished research (1991).

  34. 34.

    R.J. Asaro and W.A. Tiller, Met. Trans., 3 (1972), p. 1789.

  35. 35.

    M.A. Grinfeld, Sov. Phys. Dokl., 31 (1987), p. 831.

  36. 36.

    M.A. Grinfeld, Thermodynamic Methods in the Theory of Heterogeneous Systems (New York: Wiley, 1991).

  37. 37.

    D.J. Srolovitz, Acta Metall., 37 (1989), p. 621.

  38. 38

    P. Noziéres, Solids Far From Equilibrium, ed. C. Godreche (London: Cambridge Univ. Press, 1991).

  39. 39.

    H. Gao, Int. J. Solids Structures, 28 (1991), p. 703.

  40. 40.

    B.J. Spencer, P.W. Voorhees, and S.H. Davis, Phys. Rev. Lett., 67 (1991), p. 3696.

  41. 41.

    B.J. Spencer, S.H. Davis, and P.W. Voorhees, Phys. Rev. B, 47 (1993), p. 9760.

  42. 42.

    L.B. Freund and F. Jonsdottir, J. Mech. Phys. Solid, 41 (1993), p. 1245.

  43. 43.

    W.H. Yang and D.J. Srolovitz, Phys. Rev. Lett., 71 (1993), p. 1593.

  44. 44.

    W. Yang and D.J. Srolovitz, J. Mech. Phys. Solids, 42 (1994), p. 1551.

  45. 45.

    C.H. Chin and H. Gao, Int. J. Solids Struct., 30 (1993), p. 2983.

  46. 46.

    B.J. Spencer and D.I. Meiron, Acta Metall. Mater., 42 (1994), p. 3629.

  47. 47.

    J.R. Rice and T.J. Chuang, J. Am. Ceram. Soc., 64 (1981), p. 46.

  48. 48.

    F.Y. Genin, W.W. Mullins, and P. Wynblatt, Acta Metall. Mater., 41 (1993), p. 3541.

  49. 49.

    E.G. Colgan, C.-Y. Li, and J.W. Mayer, Appl. Phys. Lett., 51 (1987), p. 424.

  50. 50.

    J.E. Sanchez and E. Arzt, Scripta Metall Mater., 27 (1992), p. 285.

  51. 51.

    Ya. E. Geguzin, N.A. Makarovsky, and V.V. Bogdanov, Phys. Met. Metallogr., 44 (1977), p. 85.

  52. 52.

    N. Kristensen et al., J. Appl. Phys., 69 (1991), p. 2097.

  53. 53.

    A.E.B. Presland, G.L. Price, and D.L. Trimm, Surface Sci., 29 (1972), p. 424.

  54. 54.

    Ya.E. Geguzin et al., Phys. Metal. Metallogr., 39 (1975), p. 71.

  55. 55.

    C.J. Santoro, J. Electrochem. Soc., 116 (1969), p. 361.

  56. 56.

    S.K. Lahiri and O.C. Wells, Appl Phys. Lett., 15 (1969), p. 234.

  57. 57.

    P. Chaudhari, J. Appl. Phys., 45 (1974), p. 4339.

  58. 58.

    D.J. Srolovitz and S.A. Safran, J. Appl Phys., 60 (1986), p. 255.

  59. 59.

    R.H. Brandon and F.J. Bradschaw, Royal Aircraft Establishment Res. Rep. No. 66095 (1966).

  60. 60.

    T.H. Courtney and J.C. Malzahn Kampe, Acta Metall, 37 (1989), p. 1747.

  61. 61.

    E. Jiran and C.V.Thompson, J. Electron. Mater., 19(1991), p. 1153.

  62. 62.

    D.J. Srolovitz and S.A. Safran, unpublished research (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srolovitz, D.J., Goldiner, M.G. The Thermodynamics and Kinetics of film agglomeration. JOM 47, 31–36 (1995). https://doi.org/10.1007/BF03221433

Download citation

Keywords

  • Agglomeration
  • Interfacial Energy
  • Groove Depth
  • Continuous Film
  • Cylindrical Hole