Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ordered intermetallic alloys, part III: Gamma titanium aluminides

Abstract

Extensive research during the last eight years has resulted in the development and improvement of second-generation gamma alloys of engineering importance, Ti-48Al-2(Cr or Mn)-2Nb and derivatives. These alloys exhibit properties, in duplex micro-structural forms, meeting requirements for some gas-turbine and automobile engine components that may be used up to 760 °C. These achievements were made possible by an improved understanding of both fundamental and practical aspects of these aluminides, such as phase relations, microstructure evolution and control, processing, microstructure-property relationships, and deformation and fracture processes. Nevertheless, widespread higher performance and/or higher-temperature applications of these alloys appear unlikely unless the current properties are dramatically improved.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y-W. Kim, JOM, 41(7) (1989), pp. 24–30.

  2. 2.

    Y-W. Kim and D.M. Dimiduk, JOM, 43(8) (1991), pp. 40–47.

  3. 3.

    M. Yamaguchi and H. Inui, Structural Intermetallics (Warrendale, PA: TMS, 1993), pp. 127–142.

  4. 4.

    M. Yoshihara, T. Suzuki, and R. Tanaka, ISIJ International, 31 (1991), pp. 1201–1206.

  5. 5.

    S. Taniguchi and T. Shibata, Intermetallic Compounds (1993), pp. 1461–1466.

  6. 6.

    Y-W. Kim, High Temperature Ordered Intermetallic Alloys IV (Pittsburgh, PA: MRS, 1991), pp. 777–793.

  7. 7.

    S-C. Huang and D.S. Shih, Microstructure/Property Relationships in Titanium Aluminides and Alloys, ed. Y-W. Kim and R.R. Boyer (Warrendale, PA: TMS, 1990), pp. 105–122.

  8. 8.

    S. Tsuyama, S. Mitao, and K. Minakawa, in Ref. 7, pp. 213–226.

  9. 9.

    Y-W. Kim, Acta Metall. Mater., 40 (1992), pp. 1121–1134.

  10. 10.

    S. C. Huang and E. L. Hall, High Temperature Ordered Intermetallic Alloys III (Pittsburgh, PA: MRS, 1989), pp. 373–383.

  11. 11.

    M.J. Blackburn et al., U.S. patent 4,294,615 (1981).

  12. 12.

    T. Tsujimoto and K. Hashimoto, in Ref. 10, pp. 391–396.

  13. 13.

    M.J. Blackburn and M.P. Smith, Air Force Materials Lab. Report, AFWAL-TR-80-4175 (1980).

  14. 14.

    Y.G. Yamauchi and H. Shiraishi, MSE, A 153 (1992), pp. 283–287.

  15. 15.

    A. Denquin, S. Naka et al, Scripta Metall, 28 (1993), pp. 1131–1136.

  16. 16.

    S. Jain, Allison Gas Turbine, private communication (1992).

  17. 17.

    R. Wagner, GKSS, private communication (1993).

  18. 18.

    M. Nemoto, et al, Mater. Sci. & Eng., A152 (1992), pp. 247

  19. 19.

    W. E. Dowling et al., in Ref. 7, pp. 123–133.

  20. 20.

    B. Worth, Ph.D. thesis, University of Michigan (1993).

  21. 21.

    I. Yuhki et al., Proc. 1993 Yokohama Meeting (Sendai, Japan: JIM, 1993), p. 334.

  22. 22.

    Y-W. Kim, in Ref. 5, pp. 1310–1317.

  23. 23.

    Y-W. Kim, Encyclopedia of Advanced Materials (Oxford, U.K.: Pergamon Press, in press).

  24. 24.

    M.J. Blackburn and M.P. Smith, U.S. Air Force Report AFWAL-TR-82-4086 (1982).

  25. 25.

    Y-W. Kim, research in progress (1993-94).

  26. 26.

    D.S. Shih et al., in Ref. 7, pp. 135–148.

  27. 27.

    Y-W. Kim and J. J. Kleek, PM’ 90, vol. 1, (London: Institute of Metals, 1990), pp. 272–288.

  28. 28.

    T. Tsujimoto and K. Hashimoto, in Ref. 7, 391–396.

  29. 29.

    G. Frommeyer et al., Materials Sci. Eng., A152 (1992), pp. 166–172.

  30. 30.

    Y. G. Nakagawa et al., Mater. Sci. Eng., A153 (1992), p. 722.

  31. 31.

    L. Zhao, J. Beddoes, and W. Wallace, High-Temperature Ordered Intermetallic Alloys V (Pittsburgh, PA: MRS, 1993), pp. 921–926.

  32. 32.

    D. Larsen, Howmet, private communication (1993).

  33. 33.

    D. Larsen et al., Intermetallic Matrix Composites (Pittsburgh, PA: MRS, 1990), pp. 285–292.

  34. 34.

    Y-W. Kim and D.M. Dimiduk, Proc. JIMIS-7 on High Temp. Deformation and Fracture (Sendai, Japan: JIM, 1993), pp. 373–382.

  35. 35.

    Y-W. Kim and D.M. Dimiduk, U.S. patent filed (22 April 1994).

  36. 36.

    C. Austin, General Electric, private communication (1993).

  37. 37.

    S-C. Huang, U.S. patent 5,076,858 (December 31,1991).

  38. 38.

    S. Tsuyama et al., Mater. Sci & Eng., A153 (1992), pp. 451–456.

  39. 39.

    P.G. Breig and S.C. Reed, Materials & Manufacturing Processes, 4 (1989), pp. 73–83.

  40. 40.

    G. Morgan, Howmet, private communication (1992).

  41. 41.

    M. Loretto, IRC, private communication (1992).

  42. 42.

    B. London, Howmet, private communication (1993)

  43. 43.

    W.G. Smarsly, MTU, private communication (1993).

  44. 44.

    Y. Nakagawa, IHI, private communication (1993).

  45. 45.

    Y. Nishiyama et al., High Temperature Aluminides & Intermetallics (Warrendale, PA: TMS, 1990), pp. 557–584.

  46. 46.

    S. Isobe, Daido Steel, private communication (1993).

  47. 47.

    B. London et al., in Ref. 3, pp. 151–157.

  48. 48.

    M. Takeyama et al., JIMIS-6 Proc, on Intermetallic Compounds (Sendai, Japan: JIM, 1991), pp. 507–511.

  49. 49.

    S-C. Huang, private communication (1993,1994).

  50. 50.

    M. Nobuki and T. Tsujimoto, ISIJ International, 31 (1991), pp. 931–937.

  51. 51.

    S.L. Semiatin et al., Scripta Metall, 24 (1990), pp. 1403–1408.

  52. 52.

    S.L. Semiatin, WL, private communication (1993).

  53. 53.

    K. Wurzwallner et al., in Ref. 31, pp. 867–872.

  54. 54.

    M. Nobuki and T. Tsujimoto, in Ref. 48, pp. 451–456.

  55. 55.

    H. Fukutomi et al., Z. Metallkd., 81 (1990), pp. 272–277.

  56. 56.

    Ch. Hartig et al., Acta Metall Mater., 40 (1992), pp. 1883–1894.

  57. 57.

    H. Fukutomi et al., Scripta Metall Mater., 25 (1991), p. 1681.

  58. 58.

    P.A. Beaven et al, in Ref. 6, p. 1.

  59. 59.

    Y-W. Kim and D.M. Dimiduk, U.S. patent 5,226,985 (July 13,1993).

  60. 60.

    P.C. McQuay, Y-W. Kim, and D.M. Dimiduk, U.S. patent, to be awarded (July 1994).

  61. 61.

    N. Fujitsuna et al., in Ref. 3, pp. 187–194.

  62. 62.

    S.L. Semiatin et al., Scripta Metall, 29 (1993), pp. 1235–1240.

  63. 63.

    C. Koeppe et al., Trans. A, 24A (1993), pp. 1795–1806.

  64. 64.

    Y-W. Kim et al., research in progress (1993-1994).

  65. 65.

    Y-W. Kim and D. Furrer, unpublished results (1993).

  66. 66.

    V. Seetharaman et al., in Ref. 6, p. 895.

  67. 67.

    T. Tsujimoto et al., Materials Transactions, JIM, 33 (1992), pp. 989–1003.

  68. 68.

    S. L. Semiatin et al., Scripta Metall, 25 (1991), pp. 1851–1856.

  69. 69.

    H. Clemens et al., Structural Intermetallics (Warrendale, PA: TMS, 1993), pp. 205–214.

  70. 70.

    Y. Ashida, Kobe Steel, private communication (1993).

  71. 71.

    O.A. Kaibyshev, IMSP, Russia, private communication (1994)

  72. 72.

    N. Masahashi et al., ISIJ International, 31 (1991), pp. 728–737.

  73. 73.

    K. Hashimoto et al., in Ref. 7, pp. 253–262.

  74. 74.

    M. Nobuki and T. Tsujimoto, unpublished results (1993).

  75. 75.

    W. B. Lee et al., Scripta Metall, 29 (1993), pp. 1403–1408.

  76. 76.

    R.M. Imayev et al., Acta Metall Mater., 40 (1992), pp. 581–597.

  77. 77.

    T. Maeda and T. Okada (Paper presented at the 3rd IUMRS Int’l. Conf. on Advanced Materials, Tokyo, 1993, in press).

  78. 78.

    D. Shih (Paper presented at the International Workshop on TiAl, Kloster Irsee, Germany, 2–6 May 1994).

  79. 79.

    H. Clemens, in Ref. 78.

  80. 80.

    F. Yolton, Crucible, private communication (1993).

  81. 81.

    D. Eylon et al., Plansee Seminar Proc, vol. 3 (1993), pp. 552–563.

  82. 82.

    G. Fuchs, in Ref. 78.

  83. 83.

    M. Dahms et al, ISIJ International, 31 (1991), pp. 1093–1099.

  84. 84.

    M.S. Kim and K. Shibue, Light Materials for Transportation Systems (Pohang, Korea: Center for Advanced Aerospace Materials, 1993), pp. 295–303.

  85. 85.

    C. Suryanarayana and F.H. Froes, Advanced Materials, 5 (1993), pp. 96–106.

  86. 86.

    R. Bormann, in Ref. 78.

  87. 87.

    K.A.O. O’Reilly and B. Cantor, in Ref. 5, pp. 1576–1581.

  88. 88.

    T. Kato et al., in Ref. 5, pp. 1570–1575.

  89. 89.

    MJ. Blackburn et al., Air Force Mat. Lab. Report, AFW AL-TR-84-4078 (1984).

  90. 90.

    K.S. Chan and Y-W. Kim, Metall. Trans. A, 23A (1992), pp. 1663–1677.

  91. 91.

    N. Walker, Rolls Royce, private communication (1994).

  92. 92.

    Y-W. Kim and D.M. Dimiduk, in Ref. 31, pp. 671–677.

  93. 93.

    S. Krishnamurthy and Y-W. Kim, in Ref. 7, pp. 149–163.

  94. 94.

    J. Kumpfert, Y-W. Kim, and D.M. Dimiduk, submitted to Mater. Sci. and Eng. (1994).

  95. 95.

    H.A. Lipsitt et al, Met. Trans. A, 6A (1975), p. 1991.

  96. 96.

    E.L. Hall and S.C. Huang, High Temperature Ordered Intermetallic Alloys III (Pittsburgh, PA: MRS, 1989), pp. 693–698.

  97. 97.

    Y-W. Kim, in Ref. 5, pp. 1310–1317.

  98. 98.

    P. McQuay, M.S. thesis, Wright State University (1992).

  99. 99.

    Y. Umakoshi et al., Mater. Sci. Eng., 40 (1992), pp. 81–88.

  100. 100.

    M. Yamaguchi, ISIJ International, 31 (1991), pp. 1127–1133.

  101. 101.

    H. Inui et al., Acta Metall. Mater., 40 (1992), pp. 3095–3104.

  102. 102.

    A.N. Stroh, Proc. Royal Soc., A233 (1954), p. 404.

  103. 103.

    G. Malakondaiah, Y-W. Kim, and T. Nicholas, Scripta Metall., 30 (1994), pp. 939–944.

  104. 104.

    M.H. Oh, M. Yamaguchi, et. al, Acta Mater. (1994), in print.

  105. 105.

    Y-W. Kim, in Ref. 7, pp. 91–103.

  106. 106.

    K.S. Chan and Y-W. Kim, in Ref. 7, pp. 179–196.

  107. 107.

    P. Bowen, U. Birmingham, private communication (1993).

  108. 108.

    B. London and T.J. Kelly, Ref. 7, pp. 285–295.

  109. 109.

    S. Tsuyama et al., in Ref. 7, pp. 213–226.

  110. 110.

    K.S. Chan and Y-W. Kim, Acta Metall Mater., accepted (January 1994).

  111. 111.

    K.S. Chan and Y-W. Kim, Metall. Trans. A, 24A (1993), pp. 113–125.

  112. 112.

    N. Masahashi, Nippon Steel, private communication (1993).

  113. 113.

    N.J. James and P. Bowen, Structural Intermetallics (Warrendale, PA: TMS, 1993), pp. 231–240.

  114. 114.

    H.E. Deve et al., Acta Metall., Mater., 40 (1992), pp. 1259–1265.

  115. 115.

    H.E. Deve and A.G. Evans, Acta Metall. Mater., 39 (1991), pp. 1171–1176.

  116. 116.

    K. Chan and Y-W. Kim, Met. Trans. A (in print).

  117. 117.

    S. Mitao et al., in Ref. 7, pp. 297–311.

  118. 118.

    H. Oikawa, Mater. Sci. & Eng., A153 (1992), pp. 427–432.

  119. 119.

    Y-W. Kim and S. Schwenker, research in progress (1994).

  120. 120.

    J.S. Huang and Y-W. Kim, Scripta Metall., 25 (1991), pp. 1901–1906.

  121. 121.

    M. Es-Souni, A. Bartels, and R. Wagner, in Ref. 3, pp. 335–343.

  122. 122.

    Y-W. Kim, S. Schwenker, and M. Yoshihara, research in progress (1994).

  123. 123.

    P.L. Martin et al., Met. Trans. A, 14A (1983), p. 2170.

  124. 124.

    D.A. Wheeler et al., Scripta Metall., 26 (1992), p. 934.

  125. 125.

    M.F. Bartholomeusz et al., Scripta Metall., 39 (1993), pp. 389–394.

  126. 126.

    G.B Viswanathan and V.K. Vasudevan, in Ref. 31, pp. 797–792.

  127. 127.

    R.W. Hayes and B. London, Acta Metall Mater., 40 (1992), pp. 2167–2175.

  128. 128.

    K. Maruyama and H. Oikawa, in Ref. 31, pp. 653–658.

  129. 129.

    S. Kroll et al., Z. Metallkd., 83 (1992), pp. 591–595.

  130. 130.

    A. Bartels, J. Seeger, and H. Mecking, in Ref. 31, pp. 1179–84.

  131. 131.

    W.E. Dowling, Jr. et al., in Ref. 6, p. 561.

  132. 132.

    S. Sastry and H. Lipsitt, Met Trans, 8A (1977), pp. 299–308.

  133. 133.

    W.O. Soboyejo, J.E. Deffeyes, and P.B. Aswath, Maf. Sci. Eng., A138 (1991), pp. 95–101.

  134. 134.

    D.L. Davidson and J.B. Campbell, Met. Trans. A, 24A (1993), pp. 1–20.

  135. 135.

    A.W. James and P. Bowen, Materials Sci. and Eng., A153 (1992), pp. 486–492.

  136. 136.

    K.T.V. Rao, Y-W. Kim, and R.O. Ritchie, Mater. Sci. & Eng. (submitted 1994).

  137. 137.

    K.T.V. Rao and R.O. Ritchie, Mater. Sci. & Eng., A153 (1992), pp. 479–485.

  138. 138.

    J.J. Kleek and Y-W. Kim, unpublished results (1991).

  139. 139.

    P.S. Pao et al., Scripta Metall., 24 (1990), pp. 1895–1900.

  140. 140.

    S. Balsone and D. Maxwell, Mater. Sci. & Eng. (submitted 1994).

  141. 141.

    J.B. McAndrew and H.D. Kessler, J. Metals (October 1956), p. 1348.

  142. 142.

    N.S. Choudhury, Properties of HT Alloys with Emphasis on Environmental Effects (Electrical Society, 1976), pp. 668–680.

  143. 143.

    H. Nakajima et al., in Ref. 3, pp. 1467–1470.

  144. 144.

    M-X. Zhang et al., Scripta Metall, 27 (1992), pp. 1361–1366.

  145. 145.

    S. Becker et al., Oxidation of Metals, 38(5/6) (1992), pp. 425–464.

  146. 146.

    K. Maki, M. Shioda, and M. Sayashi, Mater. &i. & Eng., A153 (1992), pp. 591–596.

  147. 147.

    Y. Yoshida and H. Anada, High Temp. Corrosion of Advanced Materials and Protective Coatings (New York: Elsevier, 1992), pp. 325–332.

  148. 148.

    A. Gil et al., J. Materials Science (submitted 1993).

  149. 149.

    T. Shimizu, T. Ikubo, and S. Isobe, Mater. Sci. and Eng., A 153 (1992), pp. 602–607.

  150. 150.

    W.E. Dowling et al., Scripta Metall., 27 (1992), pp. 1663–1668.

  151. 151.

    D. Lee, M. Stucke, and D.M. Dimiduk, Mater. Sci. & Eng. (submitted 1994).

  152. 152.

    T. Kelly and C. Austin, Scripta Metall., 30 (1994), pp. 1105–1110.

  153. 153.

    C.T. Liu and Y-W. Kim, Scripta Metall., 27 (1992), pp. 599–603.

  154. 154.

    U. Figge et al., 12 Scandinavian Corrosion Congress & Eurocorr’ 93 (city, state: publisher, year), pp. 591-599.

  155. 155.

    G. Chen, Z. Sun, and X. Zhou, Mater. Sci. & Eng., A153 (1992), pp. 597–601.

  156. 156.

    M. Yoshihara and K. Miura, in Ref. 3, pp. 1476–1480.

  157. 157.

    E. Kobayashi et al, High Temp. Technology, 8 (1990), pp. 179–184.

  158. 158.

    D.W. McKee and S.C. Huang, in Ref. 6, pp. 939–943.

  159. 159.

    A. Takei and Ishida, in Ref. 147, pp. 317–324.

  160. 160.

    M. Yoshimura et al., in Ref. 3, pp. 1471–1475.

  161. 161.

    J. Schaeffer, General Electric, private communication (1994).

  162. 162.

    B. Brindley, NASA-Lewis, private communication (1994).

Download references

Author information

Additional information

Editor’s Note

This is the final part of a series on ordered intermetallic alloys. Part I, which appeared in May 1993, covered nickel and iron aluminides. Part II, published in June 1993, covered suicides, trialuminides, bery Hides, chromides, and other aluminides. This article completes the picture by covering gamma titanium aluminides, which in many ways are the most technologically developed of the ordered intermetallics.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y. Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM 46, 30–39 (1994). https://doi.org/10.1007/BF03220745

Download citation

Keywords

  • Ductility
  • Fracture Toughness
  • Fatigue Crack Growth
  • Creep Resistance
  • Tensile Ductility