, Volume 41, Issue 7, pp 24–30 | Cite as

Intermetallic alloys based on gamma titanium aluminide

  • Young-Won Kim
High-Temperature Material Overview


Titanium-aluminide alloys based on TiAl have an excellent potential to become one of the most important aerospace materials because of their low density, high melting temperature, good elevated-temperature strength and modulus retention, high resistance to oxidation and hydrogen absorption, and excellent creep properties. The chief roadblock to their application is poor ductility at low to intermediate temperatures that results in low fracture toughness and a fast fatigue-crack growth rate. During the last several years, a great deal of effort has been made to improve these ductile properties. These endeavors have met with some success through chemistry modification and microstructure control.


Vanadium Ductility Phase Field Lamellar Structure Aluminum Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.B. Bomberger et al., Titanium Technology (Dayton, OH: TDA, 1985), pp. 3–17.Google Scholar
  2. 2.
    N.G. Tupper, J.K. Elbaum and H.M. Burte, JOM, 30 (1978), pp. 7–13.Google Scholar
  3. 3.
    F.H. Froes, Space Age Metals Technology (Covina, CA: SAMPE, 1988), pp. 1–19.Google Scholar
  4. 4.
    M.J. Blackburn and M.P. Smith, AFWAL Technical Report No. AFWAL-TR-82-4086 (1982).Google Scholar
  5. 5.
    H.A. Lipsitt, Advanced High-Temperature Alloys (Metals Park, OH: ASM, 1986), pp. 157–164.Google Scholar
  6. 6.
    N.S. Choudhury et al., Properties of High Temperature Alloys with Emphasis on Environmental Effects (Electrochemical Society, 1976), pp. 668–680.Google Scholar
  7. 7.
    M. Khobaib and F.W. Vahldiek, op. cit. 3, pp. 262–270.Google Scholar
  8. 8.
    J. Subrahmanyam, J. Materials Science, 23 (1988), pp. 1906–1910.Google Scholar
  9. 9.
    M.J. Blackburn and M.P. Smith, AFWAL Technical Report No. AFWAL-TR-80-4175 (1980).Google Scholar
  10. 10.
    M.J. Blackburn et al., “Titanium Alloys of the TiAl Type,” U.S. Patent No. 4,294,615 (1981).Google Scholar
  11. 11.
    M.J. Blackburn, J.T. Hill and M.P. Smith, AFWAL Technical Report No. AFWAL-TR-84-4078 (1984).Google Scholar
  12. 12.
    S.C. Huang and E.L. Hall, MRS Meeting, Boston (1988).Google Scholar
  13. 13.
    T. Tsujimoto and K. Hashimoto, MRS Meeting, Boston (1988).Google Scholar
  14. 14.
    T. Kawabata, T. Tamura and O. Izumi, MRS Meeting, Boston (1988).Google Scholar
  15. 16.
    D.J. Maykuth, Battelle Memorial Institute, DMIC Report 136B (May 29, 1961).Google Scholar
  16. 17.
    I.A. Zelenkov and Ye.N. Martynchik, Metallofizika, Naukova Dumka, Nr. 42 (1972), pp. 63–66.Google Scholar
  17. 18.
    H.R. Ogden, D.J. Maykuth, W.L. Finlay and R.I. Jaffee, Trans. AIME, 191 (1951), pp. 1150–1155.Google Scholar
  18. 19.
    D. Clark et al., J. Institute of Metals, 91 (1962–1963), p. 197.Google Scholar
  19. 20.
    J.L. Murray, Binary Phase Diagrams, ed. T.B. Massalski (Metals Park, OH: ASM, 1986), p. 173.Google Scholar
  20. 21.
    E.S. Bumps, H.D. Kessler and M. Hansen, Trans. AIME, 194 (1952), pp. 609–614.Google Scholar
  21. 22.
    P. Duwez and J.L. Taylor, JOM (January 1952), p. 70.Google Scholar
  22. 23.
    S.C. Huang, E.L. Hall and M.F.X. Gigliotti, High-Temperature Ordered Intermetallic Alloys II, ed. N.S. Stoloff, C.C. Koch, C.T. Liu and O. Izumi (Pittsburgh, PA: MRS, 1987), p. 481.Google Scholar
  23. 24.
    R.P. Elliott and W. Rostoker, Acta Met., 2 (1954), pp. 884–885.Google Scholar
  24. 25.
    C. McCullough et al., Scripta Met., 22 (1988), pp. 1131–1136.Google Scholar
  25. 26.
    M.J. Blackburn, The Science, Technology and Application of Titanium, (Oxford: Pergamon Press, 1970), pp. 633–643.Google Scholar
  26. 27.
    J.J. Valencia et al., Scripta Met., 21 (1987), pp. 1341–1346.Google Scholar
  27. 28.
    D.S. Shong, A. Jackson and Y-W. Kim, Met. Trans. (1989), in print.Google Scholar
  28. 29.
    C.R. Feng, D.J. Michel and C.R. Crowe, MRS Meeting, Boston (1988).Google Scholar
  29. 30.
    C.R. Feng, D.J. Michel and C.R. Crowe, Scripta Met., 22 (1988), pp. 1481–1486.Google Scholar
  30. 31.
    K. Hashimoto, H. Doi and T. Tsujimoto, Trans. Japan Inst. Metals, 27(10) (1986), pp. 741–749.Google Scholar
  31. 32.
    P.A. Farrar and H. Margolin, Trans. TMS-AIME, 221 (December 1961), p. 1214.Google Scholar
  32. 33.
    J.T. Jewett, J.C. Lin et al., MRS Meeting, Boston (1988).Google Scholar
  33. 34.
    M.J. Blackburn et al., AFWAL Technical Report, AFML-78-18 (1978).Google Scholar
  34. 35.
    H.R. Ogden, D.J. Maykuth, W.L. Finlay and R.I. Jaffee, Journal of Metals (February 1953), pp. 267–272.Google Scholar
  35. 36.
    M.J. Blackburn et al., AFWAL Technical Report No. AFML-TR-79-4056 (1979).Google Scholar
  36. 37.
    T. Tsujimoto et al., Trans. Japan Institute of Metals, 27 (May 1986).Google Scholar
  37. 38.
    S.C. Huang, E.L. Hall and M.F.X. Gigliotti, abstract book, p. NP70, Sixth World Conference on Titanium, Cannes, France (June 1988).Google Scholar
  38. 39.
    H.A. Lipsitt et al., Met. Trans., 6A (November 1975), p. 1991.Google Scholar
  39. 40.
    S.C. Huang et al., TMS Annual Meeting, Phoenix, AZ (January 1988).Google Scholar
  40. 41.
    J.B. McAndrew and H.D. Kessler, JOM (October 1956), p. 1348.Google Scholar
  41. 42.
    T.E. O)Connell, AFWAL Technical Report No. AFML-TR-79-4177 (December 1979).Google Scholar
  42. 43.
    T. Kawabata, M. Tadano and O. Izumi, Scripta Met., 22 (1988), pp. 1725–1730.Google Scholar
  43. 44.
    R.E. Schafrik, Met. Trans., 8A (June 1977), pp. 1003–1006.Google Scholar
  44. 45.
    Y. Nishiyama et al., 1987 Tokyo International Gas Turbine Congress, III (1987), pp. 263–269.Google Scholar
  45. 46.
    S.M. Barinov et al., Izvestiya Akademii Nauk SSSR, 54 (1983), pp. 170–174.Google Scholar
  46. 47.
    G. Hug et al., Philosophical Magazine A, 54 (1986), pp. 47–65.Google Scholar
  47. 48.
    T. Kawabata and O. Izumi, Scripta Met., 21 (1987), pp. 433–434.Google Scholar
  48. 49.
    G. Hug, A. Loisseau and P. Veyssiere, Phil. Mag. A, 57 (1988), pp. 499–523.Google Scholar
  49. 50.
    D.W. Pashley et al., Phil. Mag., 8th series, 19 (1969), p. 83.Google Scholar
  50. 51.
    D. Shechtman et al., Met. Trans., 5 (June 1974), p. 1373.Google Scholar
  51. 52.
    E.L. Hall and S.C. Huang, MRS Meeting, Boston (1988).Google Scholar
  52. 53.
    S.M.L. Sastry and H.A. Lipsitt, Titanium ’80 (Warrendale, PA: TMS-AIME, 1980), pp. 1231–1243.Google Scholar
  53. 54.
    T. Kawabata and O. Izumi, Scripta Met., 21 (1987), pp. 435–440.Google Scholar
  54. 55.
    T. Kawabata et al., Acta Metall., 36(1988), pp. 963–975.Google Scholar
  55. 56.
    S.M.L. Sastry and H.A. Lipsitt, Met. Trans., 8A (February 1977), p. 299.Google Scholar
  56. 57.
    T. Hanamura, R. Uemori and M. Tanino, J. Mater. Res., 3(4) (July/August 1988), p. 656.Google Scholar
  57. 58.
    R.F. Domagala and W. Rostoker, Trans. ASM, 47 (1955), pp. 565–577.Google Scholar
  58. 60.
    R.A. Perkinset al., Scripta Met., 21 (1987), pp. 1505–1510.Google Scholar
  59. 61.
    D.S. Shong, Y-W. Kim et al., High Temperature Ordered Intermetallic Alloys (Pittsburgh, PA: MRS, 1989) in print.Google Scholar

Copyright information

© TMS 1989

Authors and Affiliations

  • Young-Won Kim
    • 1
    • 2
  1. 1.Metcut-Materials Research GroupWright-Patterson Air Force BaseDaytonUSA
  2. 2.University of DaytonDaytonUSA

Personalised recommendations