Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Texturing of YBa2Cu3O6+x by melt processing

Abstract

Solidification from the melt is an effective method for producing high-critical-temperature superconductors that are highly textured and have relatively high critical current densities. There are various means to generate a textured microstructure, but in all techniques the proper control of solidification parameters is paramount.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Ekin et al., J. Appl. Phys, 62 (1987), p. 4821.

  2. 2.

    J. Ekin, Adv. Ceramic Mat., 2, 3B (1987), p. 586.

  3. 3.

    D. Farrell et al., Phys. Rev. B, 36 (1987), p. 4025.

  4. 4.

    R. Arendt, A. Gaddipati, F. Luborsky and L. Schilling, High Temperature Superconductors, ed. M.R. Brodsky, R. Dynes, K. Kitazawa and H. Tuller (Pittsburgh,PA: MRS, 1988), p. 203.

  5. 5.

    J.E. Tkaczyk and K.W. Lay, J. Mater. Res., 5 (1990), p. 1368.

  6. 6.

    S. Jinet al., Phys. Rev. B, 37 (1988), p. 7850.

  7. 7.

    S. Jin et al., Appl. Phys. Lett., 52 (1988), p. 2074.

  8. 8.

    S. Jin et al., Appl. Phys. Lett., 54 (1989), p. 584.

  9. 9.

    N.McN. Alford, J. Birchall, W. Clegg and K. Kendall, J. Appl. Phys., 65 (1989), p. 2856.

  10. 10.

    M. Murakami, M. Morita and N. Koyama, Jpn. J. Appl. Phys., 28 (1989), p. L1125.

  11. 11.

    M. Murakami, M. Morita, K. Doi and K. Miyamoto, Jpn. J. Appl. Phys., 28 (1989), p. 1189.

  12. 12.

    M. Murakami et al., Jpn. J. Appl. Phys., 28 (1989), p. 399.

  13. 13.

    K. Salama, V. Selvamanickam, L. Gao and K. Sun, Appl. Phys. Lett., 54 (1989), p. 2352.

  14. 14.

    X. Jiang et al., Supercond. Sci. Technol., 1 (1988), p. 102.

  15. 15.

    P. Morris et al. J. Am. Ceram. Soc., 71 (1988), p. 334.

  16. 16.

    P. McGinn, M. Black and A. Valenzuela, Physica C, 156 (1988), p. 57.

  17. 17.

    P. McGinn, W. Chen and M. Black, Physica C, 161 (1989), p. 198.

  18. 18.

    D. Shi et al., J. Appl. Phys., 68 (1990), p. 228.

  19. 19.

    P. McGinn et al., Physica C, 165 (1990), p. 480.

  20. 20.

    P. McGinn et al., Physica C, 167 (1990), p. 343.

  21. 21.

    P. McGinn et al., Appl. Phys. Lett., 57 (1990), p. 1455.

  22. 22.

    J. Kase et al., Jpn. J. Appl. Phys., 29 (1990), p. L277.

  23. 23.

    K. Sawano et al., High Temperature Superconducting Compounds II, ed. S.H. Whang, A. DasGupta and R. Laibowitz (Warrendale,PA: TMS, 1990), p. 61.

  24. 24.

    V. Selvamanickam and K. Salama, op. cit. 23, p. 51.

  25. 25.

    T. Matsumoto et al., op. cit. 23, p. 483.

  26. 26.

    R.L. Menget al., Nature, 345 (1990), p. 326.

  27. 27.

    D. Shi et al., IEEE Trans. Mag., to be published.

  28. 28.

    S. Nagaya et al., IEEE Trans. Mag., to be published.

  29. 29.

    M. Murakami et al., IEEE Trans. Mag., to be published.

  30. 30.

    M. Morita et al., Physica C, to be published.

  31. 31.

    M. Morita et al., Physica C, 162-164, (1989), p. 1217.

  32. 32.

    T. Izumi, Y. Shiohara and S. Tanaka, submitted to Proceedings of 3rd International Symposium on Superconductivity.

  33. 33.

    M. Morita et al., op. cit. 32.

  34. 34.

    K. Sawano et al., op. cit. 32.

  35. 35.

    M. Tanaka et al., op. cit. 32.

  36. 36.

    Z. Yi, S. Ashworth, C. Beduz and R. Scurlock, IEEE Trans. Mag., to be published.

  37. 37.

    Y. Yang et al., Supercond. Sci. Technol., 3 (1990), p. 282.

  38. 38.

    R. Hongtao et al., Cryogenics, 30 (1990), p. 837.

  39. 39.

    W. Ruikun et al., Supercond. Sci. Technol., 3 (1990), p. 344.

  40. 40.

    L. Fengsheng et al., Cryogenics, 30 (1990), p. 833.

  41. 41.

    K. No, D. Chung and J. Kim, J. Mater. Res., 5 (1990), p. 2610.

  42. 42.

    J. Hodge, L. Klemptner and M. Parish, sub. to J. Mater. Sci. Lett.

  43. 43.

    R.Pollard, D.McCartney, N. Alford and T. Button, Supercond. Sci. Technol., 2 (1989), p. 169.

  44. 44.

    H. Hojaji et al., J. Mater. Res., 5 (1990), p. 721.

  45. 45.

    H. Hojaji et al., Mat. Res. Bull., 25 (1990), p. 765.

  46. 46.

    M. Murakami et al., Cryogenics, 30 (1990), p. 390.

  47. 47.

    K. Chen et al., Appl. Phys. Lett., 56 (1990), p. 2675.

  48. 48.

    A. Bourdillon, N. Tan, N. Savvides and J. Sharp, Mod. Phys. Lett. B, 3 (1990), p. 1053.

  49. 49.

    V. Selvamanickam and K. Salama, Appl. Phys. Lett., 57 (1990), p. 1575.

  50. 50.

    T. Richardson and L. De Jonghe, J. Am. Ceram. Soc., 73 (1990), p. 3511.

  51. 51.

    P. McGinn, W. Chen and N. Zhu, unpublished results.

  52. 52.

    A.P. Malozemoff, op. cit. 23, p. 3.

  53. 53.

    H. Wang et al., Appl. Phys. Lett., 57 (1990), p. 2495.

  54. 54.

    G. Kammlott, T. Tiefel and S. Jin, Appl. Phys. Lett., 56 (1990), p. 2459.

  55. 55.

    T. Aselage and K. Keefer, J. Mater. Res., 3 (1988), p. 1279.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McGinn, P.J., Chen, W. & Zhu, N. Texturing of YBa2Cu3O6+x by melt processing. JOM 43, 26–28 (1991). https://doi.org/10.1007/BF03220159

Download citation

Keywords

  • Slow Cool
  • Critical Current Density
  • Twist Boundary
  • Port Property
  • Solidification Interface