Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molten metal processing of advanced cast aluminum alloys

Abstract

Premium quality aluminum alloy castings are used extensively in various applications requiring a high strength-to-weight ratio, such as aerospace, automotive and other structural components. The mechanical properties in these structure-sensitive alloys are determined primarily by the secondary dendrite arm spacing and the morphology of interdendritic phases. In addition, the amount of porosity in the casting and the inclusion concentration have a strong influence on fracture, fatigue and impact properties. During the production of the casting, various molten metal processing techniques can be implemented to control these microstructural parameters. These melt treatments include grain refinement with Ti-B, eutectic modification with strontium or sodium, degassing with purge gases and filtration of inclusions. The efficiency of these treatments determines the quality of the cast component.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Bamberger, B.Z. Weiss and M.M. Stupel, Materials Science and Technology, 3 (1987), pp. 49–56.

  2. 2.

    M. Drouzy and M. Richard, Fonderie, 285 (1969), pp. 500–511.

  3. 3.

    J.C. Jaquet and H.J. Huber, Geissereiforschung, 38(1)(1985), pp. 11–20.

  4. 4.

    K.J. Oswalt and M.S. Misra, AFS Trans., 88 (1980), pp. 845–862.

  5. 5.

    G.D. Scott, B.A. Cheney and D.A. Granger, Technology for Premium Quality Castings, ed. E. Dunn and D.R. Durham (Warrendale, PA: TMS, 1988), pp. 123–149.

  6. 6.

    L. Backerud, G. Chai and J. Tamminen, Solidification Characteristics of Aluminum Alloys: Vol. 2, Foundry Alloys, (Des Piaines, IL: AFS, 1990).

  7. 7.

    Y. Awano and and Y. Shimizu, 56th World Foundry Congress, Dusseldorf (May 19–23, 1989), paper no. 27.

  8. 8.

    G. Sigworth, Modern Casting, 77 (7) (1987), pp. 23–25.

  9. 9.

    J. Zou, S. Shivkumar and D. Apelian, AFS Trans., 98 (1990), in press.

  10. 10.

    P.M Thomas and J.E. Gruzleski, Met. Trans. B, 9B (1978), pp. 139–141.

  11. 11.

    D.E. Talbot, Inter. Metall. Rev., 20 (1975), pp. 166–183.

  12. 12.

    K.J. Brondyke and P.D. Hess, Trans. AIME, 230 (1964), pp. 1542–1546.

  13. 13.

    D.A. Anderson, D.A. Granger and J.G. Stevens, Production and Electrolysis of Light Metals, 28th Annual Conference of Metallurgists, Halifax, Canada (August 20–24, 1989), Canadian Institute of Mining and Metallurgy, pp. 163–172.

  14. 14.

    G.K. Sigworth and T.A. Engh, Met. Trans. B, 13B (1982), pp. 447–460.

  15. 15.

    G.K. Sigworth, AFS Trans., 95 (1987), pp. 73–78.

  16. 16.

    J.P. Martin, G. Dube, D. Frayce and R. Guthrie, Light Metals 1988, pp. 445–455

  17. 17.

    D. Apelian, Proceedings of the 46th Electric Furnace Conference, Pittsburgh (December 1988).

  18. 18.

    C.E. Eckert, personal communication (1990).

  19. 19.

    C.J. Siemensen and G. Berg, Aluminum, 56 (1980), pp. 1–7.

  20. 20.

    C.J. Siemensen and G. Strand, Z. Anal. Chem., 308 (1981), pp. 11–16.

  21. 21.

    C.J. Siemensen, Met. Trans. B, 12B (1981), pp. 733–743.

  22. 22.

    C.J. Siemensen, Z. Anal. Chem., 292 (1978), pp. 207–212.

  23. 23.

    Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988).

  24. 24.

    T. Pedersen “Purge Gas Treatment of Aluminum to Remove Hydrogen, Dissolved Alkali Metals and Inclusions,” Ph.D. thesis (1984), Metallurgical Institute of the Norwegian Technical University, Trondheim, Norway.

  25. 25.

    D. Apelian and J.J.A. Cheng, AFS Trans., 94 (1986), pp. 797–808.

  26. 26.

    L. Wang, S. Shivkumar and D. Apelian, 2nd International Conference on Molten Aluminum Processing, Orlando, Florida (Nov. 6–7, 1989), AFS, paper no. 5.

  27. 27.

    G. Sigworth, International Molten Aluminum Processing (Des Plaines, IL: AFS, 1989), pp. 75–101.

  28. 28.

    A.A. Abdel-Hamid, Z. Metallkde, 80 (1989), pp. 566–569.

  29. 29.

    Q.T. Fang and D.A. Granger, AFS Trans., 97 (1989), in press.

  30. 30.

    L. Hogan, Shu-Zu Lu and A. Hellawell, Met. Trans. A, 18 (1987), pp. 1721–1739.

  31. 31.

    J.R. Denton and J.A. Spittle, Mat. Sci. & Techn., 1 (1985), pp. 305–311.

  32. 32.

    G.K. Sigworth, AFS Trans., 91 (1983), pp. 7–16.

  33. 33.

    L.F. Mondolfo, Aluminum Alloys: Structure & Properties, 2nd Edition, (London, U.K.: Butterworths & Co., 1976).

  34. 34.

    B. Closset and J.E. Gruzleski, AFS Trans., 90 (1982), pp. 453–464.

  35. 35.

    M.W. Ozelton, G.R. Turk and P.G. Porter, op. cit. 5, pp. 81–106.

  36. 36.

    T. Hurley and R. Atkinson, AFS Trans., 93 (1985), pp. 291–296.

  37. 37.

    F.C. Dimayuga, N. Handiak and J.E. Gruzleski, AFS Trans., 96 (1988), pp. 83–88.

  38. 38.

    H. Shahani, Scandinavian Journal of Metallurgy, 14 (1985), pp. 306–312.

  39. 39.

    D. Argo and J.E. Gruzleski, AFS Trans., 96 (1988), pp. 65–74.

  40. 40.

    S. Shivkumar et al., AFS Trans., 97 (1987), pp. 791–810.

  41. 41.

    S. Shivkumar, S. Ricci, Jr., C. Keller and D. Apelian, J. Heat Treating, 8(1) (1990), pp. 63–70.

  42. 42.

    M. Drouzy, S. Jacob and M. Richard, AFS International Cast Metals Research Journal (June 1980), pp. 43–50.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shivkumar, S., Wang, L. & Apelian, D. Molten metal processing of advanced cast aluminum alloys. JOM 43, 26–32 (1991). https://doi.org/10.1007/BF03220114

Download citation

Keywords

  • Aluminum Alloy
  • Strontium
  • Silicon Particle
  • Cast Aluminum Alloy
  • Ceramic Foam