Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Successive synthesis of well-defined star-branched polymers by an iterative approach based on living anionic polymerization

  • 88 Accesses

  • 31 Citations

Abstract

To successively synthesize star-branched polymers, we developed a new iterative methodology which involves only two sets of the reactions in each iterative process: (a) an addition reaction of DPE or DPE-functionalized polymer to a living anionic polymer, and (b) anin-situ reaction of 1-(4-(4-bromobutyl)phenyl) -1-phenylethylene with the generated 1,1-diphenylalkyl anion to introduce one DPE functionality. With this methodology, 3-, 4-, and 5-arm, regular star-branched polystyrenes, as well as 3-arm ABC, 4-arm ABCD, and a new 5-arm ABCDE, asymmetric star-branched polymers, were successively synthesized. The A, B, C, D, and E arm segments were poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), poly(4-methylstyrene), polystyrene, and poly(4-tert-butyldimethylsilyloxystyrene), respectively. All of the resulting star-branched polymers were well-defined in architecture and precisely controlled in chain length, as confirmed by SEC,1H NMR, VPO, and SLS analyses. Furthermore, we extended the iterative methodology by the use of a new functionalized DPE derivative, 1-(3-chloromethylphenyl)-1-((3-(1-phenylethenyl)phenyl)ethylene, capable of introducing two DPE functionalitiesvia one DPE anion reaction site in the reaction (b). The number of arm segments of the star-branched polymer synthesized by the methodology could be dramatically increased to 2, 6, and up to 14 by repeating the iterative process.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    B. J. Bauer and L. J. Fetters,Rubber Chem. Technol.,51, 406 (1978).

  2. (2)

    S. Bywater,Adv. Polym. Sci.,30, 89 (1979).

  3. (3)

    J. Roovers, inEncyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, 1989, Vol. 2, pp 478–499.

  4. (4)

    P. Rempp and J. E. Herz, inEncyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, 1989, Suppl. Vol., pp 493–510.

  5. (5)

    L. J. Fetters and E. L. Tomas, inMaterial Science and Technology, VCH Verlangesellschaft, Weinheim, Germany, 1993, Vol. 12, pp 1–31.

  6. (6)

    H. L. Hsieh and R. P. Quirk, inAnionic Polymerization: Principles and Applications, Marcel Dekker, New York, 1996, pp 333–368.

  7. (7)

    G. S. Grest, L. J. Fetters, and J. S. Huang,Adv. Chem. Phys.,XCIV, 67 (1996).

  8. (8)

    P. J. Lutz and D. Rein, inStar and Hyperbranched Polymers, M. K. Mishra and S. Kobayashi, Eds., Marcel Dekker, New York, 1999, pp 27–57.

  9. (9) (a)

    N. Hadjichristidis,J. Polym. Sci.; Part A: Polym. Chem.,37, 857 (1999). (b) N. Hadjichristidis, M. Pitsikalis, H. Iatrou, and C. Vlahos,Adv. Polym. Sci.,142, 72 (1999). (c) N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou,Chem. Rev.,101, 3747 (2001). (d) N. Hadjichristidis, M. Pitsikalis, H. Iatrou, and S. Pispas,Macromol. Rapid Commun.,24, 979 (2003).

  10. (10) (a)

    A. Hirao, M. Hayashi, Y. Tokuda, N. Haraguchi, T. Higashihara, and S. W. Ryu,Polym. J.,34, 1 (2002). (b) A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S. W. Ryu, N. Haraguchi, A. Matsuo, and T. Higashihara,Prog. Polym. Sci.,30, 111 (2005).

  11. (11)

    S. Pispas, Y. Poulos, and N. Hadjichristidis,Macromolecules,31, 4177 (1998).

  12. (12)

    S. Sioula, N. Hadjichristidis, and E. L. Thomas,Macromolecules,31, 5272 (1998).

  13. (13)

    S. Sioula, N. Hadjichristidis, and E. L. Thomas,Macromolecules,31, 8429 (1998).

  14. (14)

    S. Pispas, N. Hadjichristidis, I. Potemkin, and A. Khokhlov,Macromolecules,33, 1741 (2000).

  15. (15)

    H. Hückstädt, A. Göpfert, and V. Abetz,Macromol. Chem. Phys.,201, 296 (2000).

  16. (16)

    K. Yamaguchi, K. Takahashi, H. Hasegawa, H. Iatrou, N. Hadjichristidis, T. Kaneko, Y. Nishikawa, H. Jinnai, T. Matsui, H. Nishioka, M. Shimizu, and H. Furukawa,Macromolecules,36, 6962 (2003).

  17. (17)

    R. W. Penisi and L. Fetters,Macromolecules,21, 1094 (1988).

  18. (18)

    J. W. Mays,Polym. Bull. (Berlin),23, 247 (1990).

  19. (19)

    I. M. Khan, Z. Gao, K. Khougaz, and A. Eisenberg,Macromolecules,25, 3002 (1992).

  20. (20)

    (20) (a)H. Iatrou and N. Hadjichristidis,Macromolecules,25, 4649 (1992). (b) H. Iatrou and N. Hadjichristidis,Macromolecules,26, 2479 (1993). (c) H. Iatrou, E. Siakali-Kioulafa, N. Hadjichristidis, J. Roovers, and J. W. Mays,J. Polym. Sci., Polym. Phys. Ed.,33, 1925 (1995). (d) A. Avgeropoulos, N. Hadjichristidis, and J. Roovers,Macromolecules,29, 6076 (1996). (e) S. Sioula, Y. Tselikas, N. Hadjichristidis, and J. Roovers,Macromolecules,30, 1518 (1997). (f) A. Avgeropoulos and N. Hadjichristidis,J. Polym. Sci., Polym. Chem. Ed.,35, 813 (1997). (g) G. Velis and N. Hadjichristidis,Macromolecules,32, 534 (1999).

  21. (21)

    T. Fujimoto, H. Zhang, T. Kazama, Y. Isono, H. Hasegawa, and T. Hashimoto,Polymer,29, 6076 (1992).

  22. (22)

    H. Hückstädt, V. Abetz, and R. Stadler,Macromol. Rapid Commun.,17, 599 (1996).

  23. (23) (a)

    R. P. Quirk, B. Lee, and L. E. Schock,Makromol. Chem. Macromol. Symp.,53, 201 (1992). (b) R. P. Quirk, T. Yoo, and B. Lee,J. Makromol. Sci., Pure Appl. Chem.,A31, 911 (1994). (c) R. P. Quirk, T. Yoo, Y. Lee, J. Kim, and B. Lee,Adv. Polym. Sci.,153, 67 (2000).

  24. (24) (a)

    Y. C. Bae and R. Faust,Macromolecules,31, 2480 (1998). (b) J. Yun and R. Faust,Macromolecules,35, 7860 (2002).

  25. (25)

    C. M. Fernyhough, R. N. Young, and R. D. Tack,Macromolecules,32, 5760 (1999).

  26. (26) (a)

    O. Lambert, P. Dumas, G. Hurtrez, and G. Riess,Macromol. Rapid Commun.,18, 343 (1997). (b) O. Lambert, S. Reutenauer, G. Hurtrez, G. Riess, and P. Dumas,Polym. Bull. (Berlin),40, 143 (1998). (c) S. Reutenauer, G. Hurtrez, and P. Dumas,Macromolecules,34, 755 (2001). (d) N. Meyer, C. Delaite, G. Hurtrez, and P. Dumas,Polymer,43, 7133 (2002).

  27. (27)

    M. Hayashi, K. Kojima, and A. Hirao,Macromolecules,32, 2425 (1999).

  28. (28)

    M. Hayashi, Y. Negishi, and A. Hirao,Proc. Jpn. Acad. Ser. B,75, 93 (1999).

  29. (29)

    A. Hirao and M. Hayashi,Acta Polym.,50, 219 (1999).

  30. (30)

    A. Hirao, M. Hayashi, and N. Haraguchi,Macromol. Rapid Commun.,21, 1171 (2000).

  31. (31)

    A. Hirao, A. Matsuo, K. Morifuji, Y. Tokuda, and M. Hayashi,Polym. Adv. Technol.,12, 680 (2001).

  32. (32)

    A. Hirao, M. Hayashi, and T. Higashihara,Macromol. Chem. Phys.,202, 3165 (2001).

  33. (33)

    A. Hirao and T. Higashihara,Macromolecules,35, 7238 (2002).

  34. (34)

    A. Hirao and N. Haraguchi,Macromolecules,35, 7224 (2002).

  35. (35)

    A. Hirao, M. Hayashi, and A. Matsuo,Polymer,43, 7125 (2002).

  36. (36)

    A. Hirao and A. Matsuo,Macromolecules,36, 9742 (2003).

  37. (37)

    A. Hirao, K. Kawasaki, and T. Higashihara,Sci. Technol. Adv. Mater.,5, 469 (2004).

  38. (38)

    A. Hirao, K. Kawasaki, and T. Higashihara,Macromolecules,37, 5179 (2004).

  39. (39)

    A. Hirao and T. Higashihara,Macromol. Symp.,215, 57 (2004).

  40. (40)

    T. Higashihara and A. Hirao,J. Polym. Sci.; Part A: Polym. Chem.,42, 4535 (2004).

  41. (41)

    T. Higashihara, M. Nagura, K. Inoue, N. Hraguchi, and A. Hirao,Macromolecules,38, 4577 (2005).

  42. (42)

    A. Hirao, M. Hayashi, and T. Higashihara,Macromol. Chem. Phys.,202, 3165 (2001).

  43. (43)

    A. Hirao and T. Higashihara,Macromolecules,35, 7238 (2002).

  44. (44)

    Y. Zhao, T. Higashihara, K. Sugiyama, and A. Hirao,J. Am. Chem. Soc.,127, 14158 (2005).

  45. (45)

    R. M. Pike,J. Polym. Sci.,40, 577 (1959).

  46. (46)

    A. Hirao, K. Yamaguchi, K. Takenaka, K. Suzuki, and S. Nakahama,Makromol. Chem., Rapid Commun.,3, 941 (1982).

  47. (47)

    G. G. H. Schulz and H. Höcker,Makromol. Chem.,178, 2589 (1977).

  48. (48)

    J. F. Douglas, J. Roovers, and K. F. Freed,Macromolecules,23, 4168 (1990).

  49. (49)

    N. Corbin and J. Prud’homeme,J. Polym. Sci., Polym. Phys.,15, 1937 (1977).

  50. (50)

    The first successful synthesis of 4-arm ABCD asymmetric star-branched polymer by the coupling of living anionic polymers with SiCl4 was reported by Hadjichristidis’s group in 1993 (ref. 20(b)Macromolecules,25, 4649 (1992)). In this star, the A, B, C, and D segments were polystyrene, poly(4-methylstyrene), polyisoprene, and poly(1,3-butadiene), respectively. We have recently synthesized two structural similar 4-arm ABCD asymmetric starbranched polymers whose A, B, C, and D segments are polyisoprene, poly(4-methoxystyrene), polystyrene, and poly(4-trimethylsilylstyrene) (ref. 40 T. Higashihara and A. Hirao,J. Polym. Sci.; Part A: Polym. Chem.,42, 4535 (2004)), and polystyrene, poly (α-methylstyrene), poly(4-methylstyrene), and poly(methyl methacrylate) (ref. 41 T. Higashihara, M. Nagura, K. Inoue, N. Hraguchi, and A. Hirao,Macromolecules,38, 4577 (2005)). Furthermore, the synthesis of more complex well-defined 7-arm A2B2C2D and 13-arm A4B4C4D asymmetric stars has also been successfully achieved by our research group (refs. 37 A. Hirao, K. Kawasaki, and T. Higashihara,Sci. Technol. Adv. Mater.,5, 469 (2004) and 38 A. Hirao, K. Kawasaki, and T. Higashihara,Macromolecules,37, 5179 (2004)). Very recently, we have successfully synthesized a 5-arm ABCDE asymmetric starbranched polymer for the first time. The A,B,C,D, and E segments in this star are polystyrene, poly(α-methylstyrene), poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), and poly(4-methylphenyl vinyl sulfoixe), respectively (ref. 44 Y. Zhao, T. Higashihara, K. Sugiyama, and A. Hirao,J. Am. Chem. Soc.,127, 14158 (2005)).

Download references

Author information

Correspondence to Akira Hirao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Higashihara, T., Inoue, K., Nagura, M. et al. Successive synthesis of well-defined star-branched polymers by an iterative approach based on living anionic polymerization. Macromol. Res. 14, 287–299 (2006). https://doi.org/10.1007/BF03219084

Download citation

Keywords

  • star-branched polymers
  • living anionic polymerization
  • iterative methodology