Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of maleylation on physicochemical properties of soybean glycinin

  • 58 Accesses

  • 4 Citations

Abstract

Soybean proteins appear to harbor a great deal of potential as functional ingredients due to the fact that they are composed of highly bioavailable peptides and amino acids. To develop drink- or gel-type foods formulated with soybean protein, the physicochemical properties of intact and chemically modified soy glycinin were assessed. Maleylation to soy glycinin altered the surface charges of glycinin via the modification of lysine residues, and subsequently generated the dissociation of glycinin subunits owing to the increase in charge repulsion. This modification thus improved the solubility of glycinin, particularly under acidic pH conditions. It is worthy of note that maleylation increased the susceptibility of the basic subunits of mTGase and the formation of a substantial quantity of molecules at a low protein solution concentration. The results of dynamic rheological studies indicated that the 5% intact glycinin progressively formed the gel with mTGase treatment in a concentration-dependent manner, but maleylated-glycinin did not.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    W. J. Wolf and D. A. Sly,Cereal Chem.,44, 653 (1987).

  2. (2)

    D. R. Briggs and W. J. Wolf,Arch. Biochem. Biophys.,72, 127 (1957).

  3. (3)

    M. Samoto and Y. Kawamura,The Food Industry,39, 76 (1996).

  4. (4)

    S. Makino, H. Nakashima, K. Minami, R. Moriyama, and S. Takao,Agric. Biol. Chem.,52, 803 (1988).

  5. (5)

    N. Hettiarachchy and U. Kalapathy, inSoybeans: Chemistry, Technology and Utilization, L. Keshun, Ed., Chanpman & Hall, New York, 1997, pp 379–411.

  6. (6)

    M. Friedman and D. L. Brandon,J. Agric. Food Chem.,49, 1069 (2001).

  7. (7)

    W. L. Boatright and N. S. Hetiarachchy,J. Food Sci.,60, 806 (1995).

  8. (8)

    Y. R. Choi, E. W. Lusas, and K. C. Rhee,J. Food Sci.,47, 1713 (1982).

  9. (9)

    A. H. Clark and C. D. Lee-Tuffnell, inFunctional Properties of Food Macromolecules, J. R. Mitchell and D. A. Ledward, Eds., Elsevier, London, U.K., 1986, pp 203–272.

  10. (10)

    X. Mo, Z. Zhong, D. Wang, and X. Sun,J. Agric. Food Chem.,54, 7589 (2006).

  11. (11)

    Y. Zhu, A. Rinzema, J. Tramper, and J. Bol,Appl. Microbiol. Biotechnol.,44, 277 (1995).

  12. (12)

    H. Sakamoto, Y. Kumazawa, S. Toiguchi, K. Seguro, T. Soeda, and M. Motoki,J. Food Sci.,59, 866 (1995).

  13. (13)

    K. Ikura, R. Sasaki, and M. Motoki,Agric. Food Chem.,2, 389 (1992).

  14. (14)

    A. Mizuno, M. Mitsuiki, and M. Motoki,J. Agric. Food Chem.,48, 3286 (2000).

  15. (15)

    L. Kurth and P. J. Rogers,J. Food Sci.,49, 573 (1984).

  16. (16)

    Y. Kang, H. J. Kim, W. S. Shin, G. J. Woo, and T. W. Moon,J. Food Sci.,58, 2215 (2003).

  17. (17)

    H. Ando, M. Adachi, K. Umeda, A. Matsuura, M. Nonaka, R. Uchio, H. Tanaka, and M. Motoki,Agric. Biol. Chem.,53, 2613 (1989).

  18. (18)

    M. Motoki and K. Seguro,Food Sci. Technol.,9, 204 (1998).

  19. (19)

    W. S. Shin, H. S. Seo, G. J. Woo, and Y. S. Jeong, J. KoreanSoc. Food Sci. Nutri.,34, 1434 (2005).

  20. (20)

    H. S. Seo, W. S. Shin, S. Yoon, and S. J. Lee,Food Sci. Biotechnol.,12, 1 (2003).

  21. (21)

    J. S. Yoo, W. S. Shin, G. J. Woo, Y. S. Kim, and Y. S. Jeong,Korean J. Food Sci. Technol.,35, 260 (2003).

  22. (22)

    V. H. Thanh, K. Okubo, and K. Shibasaki,Plant Physiol.,56, 19 (1975).

  23. (23)

    Y. Kawai, S. Fujimura, and K. Takahashi,Int. J. Food Sci. Technol.,33, 385 (1998).

  24. (24)

    J. Adler-Nessen,J. Agric. Food Chem.,27, 1256 (1979).

  25. (25)

    U. K. Laemmli,Nature,227, 680 (1970).

  26. (26)

    M. Liu, D. S. Lee, and S. Damodaran,J. Agric. Food Chem.,47, 4970 (1999).

  27. (27)

    T. E. Creighton, inProtein: Structure and Molecular Peroperties, 2nd Eds., Freeman, U.S.A., 1993.

  28. (28)

    Y. Chanyongvorakul, Y. Matsumura, M. Nonaka, M. Motoki, and T. Mori,J. Food Sci.,60, 483 (1995).

  29. (29)

    D. Y. Kwon, S. Kim, H. Y. L. Kim, and K. S. Kim,Food Sci. Biotechnol.,12, 122 (2003).

Download references

Author information

Correspondence to Weon-Sun Shin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shin, W., Park, S., Park, C. et al. Effect of maleylation on physicochemical properties of soybean glycinin. Macromol. Res. 15, 671–675 (2007). https://doi.org/10.1007/BF03218948

Download citation

Keywords

  • microbial transglutaminase
  • hwanggumkong glycinin
  • maleylation
  • structural susceptibility