Advertisement

Macromolecular Research

, Volume 16, Issue 3, pp 204–211 | Cite as

Platinum-catalyzed and ion-selective polystyrene fibrous membrane by electrospinning andin-situ metallization techniques

  • Seung-Hee Hong
  • Sun-Ae Lee
  • Jae-Do NamEmail author
  • Young-Kwan Lee
  • Tae-Sung Kim
  • Sungho Won
Article

Abstract

A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers andin-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites (SO3 ) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity (I EC ) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the SO3 ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, Pt(NH3)4 2+, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. Thein-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

Keywords

sulfonation membrane platinum fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. H. Han, D. O. Kim, Y. K. Lee, S. J. Suh, H. C. Jung, Y. S. Oh, and J. D. Nam,Macromol. Rapid Commun.,27, 1483 (2006).CrossRefGoogle Scholar
  2. (2).
    B. C. H. Steele and A. Heinzel,Nature,414, 345 (2001).CrossRefGoogle Scholar
  3. (3).
    S. M. J. Zaidi and M. I. Ahmad,J. Membrane Sci.,279, 548 (2006).CrossRefGoogle Scholar
  4. (4).
    J. H. Cho and F. Caruso,Chem. Mater.,17, 4547 (2005).CrossRefGoogle Scholar
  5. (5).
    O. A. Baturina, S. R. Aubuchon, and K. J. Wynne,Chem. Mater.,18, 1498 (2006).CrossRefGoogle Scholar
  6. (6).
    J. H. Nam, Y. Y. Jang, Y. U. Kwon, and J. D. Nam,Electrochem. Commun.,6, 737 (2004).CrossRefGoogle Scholar
  7. (7).
    K. Lee, J. H. Nam, J. H. Lee, Y. Lee, S. M. Cho, C. H. Jung, H. G. Choi, Y. Y. Chang, Y. U. Kwon, and J. D. Nam,Electrochem. Commun.,7, 113 (2005).CrossRefGoogle Scholar
  8. (8).
    J. H. Lee, J. H. Lee, J. D. Nam, H. R. Choi, K. M. Jung, W. J. Jeon, Y. K. Lee, K. J. Kim, and Y. S. Tak,Sensors & Actuators A,118, 98 (2005).CrossRefGoogle Scholar
  9. (9).
    N. Kato and F. J. Caruso,J. Phys.Chem. B,109, 19604 (2005).CrossRefGoogle Scholar
  10. (10).
    J. Mann, N. Yao, and A. B. Bocarsly,Langmuir,22, 10432 (2006).CrossRefGoogle Scholar
  11. (11).
    E. P. Murray, T. Tsai, and S. A. Barnett,Nature,400, 649 (1999).CrossRefGoogle Scholar
  12. (12).
    M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath,Chem. Rev.,104, 4587 (2004).CrossRefGoogle Scholar
  13. (13).
    N. Asano, A. Makoto, S. Suzuki, K. Miyatake, H. Uchida, and M. Watanabe,J. Am. Chem. Soc.,128, 1762 (2006).CrossRefGoogle Scholar
  14. (14).
    C. H. Rhee, H. K. Kim, H. Chang, and J. S. Lee,Chem. Mater.,17, 1691 (2005).CrossRefGoogle Scholar
  15. (15).
    Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, and Y. Yan,Chem. Mater.,18, 5669 (2006).CrossRefGoogle Scholar
  16. (16).
    A. R. Tan, L. M. Carvalho, and A. S. Gomes,Macromol. Symp.,229, 168 (2005).CrossRefGoogle Scholar
  17. (17).
    P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliaguine,Macromolecules,37, 7960 (2004).CrossRefGoogle Scholar
  18. (18).
    S. Swier, V. Ramani, J. M. Fenton, H. R. Kunz, M. T. Shaw, and R. A. Weiss,J. Membrane Sci.,256, 122 (2005).Google Scholar
  19. (19).
    C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri,Polymer,42, 359 (2001).CrossRefGoogle Scholar
  20. (20).
    N. Carretta, V. Tricoli, and F. Picchioni,J. Membrane Sci.,166, 189 (2000).CrossRefGoogle Scholar
  21. (21).
    M. M. Nasef, N. A. Zubir, A. F. Ismail, K. Z. M. Dahlan, H. Saidi, and M. Khayet,J. Power Sources,156, 200 (2006).CrossRefGoogle Scholar
  22. (22).
    T. Yamaguchi, H. Kuroki, and F. Miyata,Electrochem. Commun.,7, 730 (2005).CrossRefGoogle Scholar
  23. (23).
    A. Frenot and I. S. Chronakis,Curr. Opin. Colloid Interface Sci.,8, 64 (2003).CrossRefGoogle Scholar
  24. (24).
    Y. H. Lee, J. H. Lee, I. G. An, C. Kim, D. S. Lee, Y. K. Lee, and J. D. Nam,Biomaterials,26, 3165 (2005).CrossRefGoogle Scholar
  25. (25).
    S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns,Chem. Mater.,19, 104 (2007).CrossRefGoogle Scholar
  26. (26).
    H. Dong, E. Fey, A. Gandelman, and W. Jones,Chem. Mater.,18, 2008 (2006).CrossRefGoogle Scholar
  27. (27).
    M. Watanabe, H. Uchida, and H. Igarashi,Macromol. Symp.,156, 223 (2000).CrossRefGoogle Scholar
  28. (28).
    S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee,Electrochim. Acta,24, 3693 (1998).CrossRefGoogle Scholar
  29. (29).
    M. Pan, H. Tang, S. P. Jiang, and Z. J. Liu,Electrochem. Soc.,152, A1081 (2005).CrossRefGoogle Scholar
  30. (30).
    R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan,Science,267, 1629 (1995).CrossRefGoogle Scholar
  31. (31).
    S. Kubo, Z. Z. Gu, D. A. Tryk, Y. Ohko, O. Sato, and A. Fujishima,Langmuir,18, 5043 (2002).CrossRefGoogle Scholar
  32. (32).
    O. Prucker and J. Ruhe,Macromolecules,31, 592 (1998).CrossRefGoogle Scholar
  33. (33).
    J. H. Lee, D. W. Kim, G. S. Song, Y. G. Lee, S. B. Jung, and J. D. Nam,Macromol. Rapid Commun.,28, 634 (2007).CrossRefGoogle Scholar
  34. (34).
    P. A. Schueler, J. T. Ives, F. DeLaCroix, W. B. Lacy, P. A. Becker, J. Li, K. D. Caldwell, B. Drake, and J. M. Harris,Anal. Chem.,65, 3177 (1993).CrossRefGoogle Scholar
  35. (35).
    A. B. R. Mayer, W. Grebner, and R. Wannemacher,J. Phys. Chem. B,104, 7278 (2000).CrossRefGoogle Scholar
  36. (36).
    P. Lianos and J. K. Thomas,J. Colloid Interf. Sci.,117, 505 (1987).CrossRefGoogle Scholar
  37. (37).
    S. Shibata, K. Aoki, T. Yano, and M. Yamane,J. Sol-Gel Sci. Tech.,11, 279 (1998).CrossRefGoogle Scholar
  38. (38).
    V. G. Pol, D. N. Srivastava, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss, and A. Gedanken,Langmuir,18, 3352 (2002).CrossRefGoogle Scholar
  39. (39).
    B. Wang, Z. Ji, F. T. Zimone, G. M. Janowski, and J. M. Rigsbee,Surf. Coat. Technol.,91, 64 (1997).CrossRefGoogle Scholar
  40. (40).
    J. Zhang, J. Liu, S. Wang, P. Zhan, Z. Wang, and N. Ming,Adv. Funct. Mater.,14, 1089 (2004).CrossRefGoogle Scholar
  41. (41).
    S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas,Langmuir,14, 5396 (1998).CrossRefGoogle Scholar
  42. (42).
    A. Dokoutchaev, J. T. James, S. C. Koene, S. Pathak, G. K. S. Prakash, and M. E. Thompson,Chem. Mater.,11, 2389 (1999).CrossRefGoogle Scholar
  43. (43).
    J. P. Shin, B. J. Chang, J. H. Kim, S. B. Lee, and D. H. Suh,J. Membrane Sci.,251, 247 (2005).CrossRefGoogle Scholar
  44. (44).
    K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee,Polymer,44, 4029 (2003).CrossRefGoogle Scholar
  45. (45).
    C. K. Shin, G. Maier, and G. G. Scherer,J. Membrane Sci.,245, 163 (2004).CrossRefGoogle Scholar
  46. (46).
    N. Walsby, M. Paronen, J. Juhanoja, and F. Sundholm,J. Appl. Polym. Sci.,81, 1572 (2001).CrossRefGoogle Scholar
  47. (47).
    J. S. Casasa, Y. Parajóa, Y. Romeroa, A. Sánchez-Gonzáleza, J. Sordoa, and E. M. Z. Vázquez-Lópezb,Anorg. Allg. Chem.,630, 980 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Seung-Hee Hong
    • 1
  • Sun-Ae Lee
    • 1
  • Jae-Do Nam
    • 1
    Email author
  • Young-Kwan Lee
    • 2
  • Tae-Sung Kim
    • 3
  • Sungho Won
    • 4
  1. 1.Department of Polymer Science and EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Chemical EngineeringSungkyunkwan UniversitySuwonKorea
  3. 3.School of Mechanical EngineeingSungkyunkwan UniversitySuwonKorea
  4. 4.Microelectronic Packaging R&D CenterSungkyunkwan UniversitySuwonKorea

Personalised recommendations