Advertisement

Macromolecular Research

, Volume 14, Issue 6, pp 596–602 | Cite as

Effect of high-temperature spinning and PVP additive on the properties of PVDF hollow fiber membranes for microfiltration

  • Bong Jun ChaEmail author
  • Jung Mok Yang
Article

Abstract

The effect of high-temperature spinning and poly(vinyl pyrrolidone) (PVP) additive on poly(vinylidene fluoride) (PVDF) hollow fiber membranes was investigated using differential scanning calorimetry, X-ray diffraction measurement, and scanning electron microscopy, together with the corresponding microfiltration performances such as water flux, rejection rate, and elongational strength. Using high-temperature spinning, porous hollow fiber membranes with particulate morphology were prepared through PVDF crystallization. The particulate structure of the membranes was further modified by the addition of miscible PVP with PVDF. Due to these effects, the rejection rate and strength of the fibers were increased at the expense of reduced water flux and mean pore size, which indicates that high-temperature spinning and PVP addition are very effective to control the morphology of PVDF hollow fiber membranes for microfiltration.

Keywords

poly(vinylidene fluoride) poly(vinyl pyrrolidone) high-temperature spinning hollow membrane microfiltration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Witte, P. J. Dijkstra, J. W. A. Berg, and J. Feijen,J. Membrane Sci.,117, 1 (1996).CrossRefGoogle Scholar
  2. (2).
    D. -J. Lin, K. Beltsios, T. -H. Young, Y. -S. Jeng, and L. -P. Cheng,J. Membrane Sci.,274, 64 (2006).CrossRefGoogle Scholar
  3. (3).
    L. -P. Cheng, T. -H. Young, L. Fang, and J. -J. Gau,Polymer,40, 2394 (1999).Google Scholar
  4. (4).
    X. Tan, S. P. Tan, W. K. Teo, and K. Li,J. Membrane Sci.,271, 153 (1998).Google Scholar
  5. (5).
    M. Mulder,Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht, The Netherlands, 1992.Google Scholar
  6. (6).
    L. Y. Lafreniere, F. D. F. Talbot, T. Matsuura, and S. Sourirajan,Ind. Eng. Chem. Res.,26, 2385 (1987).CrossRefGoogle Scholar
  7. (7).
    M.-C. Yang and T. -Y. Liu,J. Membrane Sci.,226, 119 (2003).CrossRefGoogle Scholar
  8. (8).
    C. Hying and E. Staude,J. Membrane Sci.,144, 251 (1998).CrossRefGoogle Scholar
  9. (9).
    J. -J. Qin, F. -S. Wong, Y. Li, and Y. -T. Liu,J. Membrane Sci.,211, 139 (2003).CrossRefGoogle Scholar
  10. (10).
    J. H. Kim, J. E. You, and C. K. Kim,Macromol. Res.,10, 209 (2002).CrossRefGoogle Scholar
  11. (11).
    D. Wang, K. Li, and W. K. Teo,J. Membrane Sci.,163, 211 (1999).CrossRefGoogle Scholar
  12. (12).
    B. J. Cha, K. Char, J. -J. Kim, S. S. Kim, and C. K. Kim,J. Membrane Sci.,108, 219 (1995).CrossRefGoogle Scholar
  13. (13).
    H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, and N. Kubota,J. Membrane Sci.,223, 119 (2003).CrossRefGoogle Scholar
  14. (14).
    B. T. Kim, K. Song, and S. S. Kim,Macromol. Res.,10, 127 (2002).CrossRefGoogle Scholar
  15. (15).
    K. Tan and S. K. Obendorf,J. Membrane Sci.,274, 150 (2006).CrossRefGoogle Scholar
  16. (16).
    J. W. Cho, H. Y. Song, and S. Y. Kim,Polymer,34, 1024 (1993).CrossRefGoogle Scholar
  17. (17).
    B. S. Kim, S. T. Baek, K. W. Song, I. H. Park, J. O. Lee, and N. Nemoto,J. Macromol. Sci.,B43, 741 (2004).CrossRefGoogle Scholar
  18. (18).
    M. Tazaki, R. Wada, M. Okabe, and T. Homma,J. Appl. Polym. Sci.,65, 1517 (1997).CrossRefGoogle Scholar
  19. (19).
    B. J. Cha, J. M. Yang, Y. J. Choi, and H. Kim,J. Membrane Sci., submitted.Google Scholar
  20. (20).
    L.-P. Cheng,Macromolecules,32, 6668 (1999).CrossRefGoogle Scholar
  21. (21).
    Z. H. Liu, Ph. Marechal, and R. Jerome,Polymer,37, 5317 (1996).CrossRefGoogle Scholar
  22. (22).
    S. Hietala, S. Holmberg, M. Karjalainen, J. Nsman, M. Paronen, P. Serima, F. Sundhole, and S. Vahvaselk,J. Mater. Chem.,7, 721 (1997).CrossRefGoogle Scholar
  23. (23).
    B.-E. E. Mohajir and N. Heymans,Polymer,42, 5661 (2001).CrossRefGoogle Scholar
  24. (24).
    F. A. Landis and R. B. Moore,Macromolecules,33, 6031 (2000).CrossRefGoogle Scholar
  25. (25).
    N. Chen and L. Hong,Polymer,43, 1429 (2002).CrossRefGoogle Scholar
  26. (26).
    M. A. Sabino, S. Gonzalez, L. Maequez, and J. L. Feijoo,Polym. Degrad. Stabil.,69, 209 (2000).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2006

Authors and Affiliations

  1. 1.Division of Environmental Engineering and BiotechnologyMyongji UniversityGyeonggiKorea

Personalised recommendations