Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Fabrication of multicomponent protein microarrays with microfluidic devices of poly(dimethylsiloxane)

  • 91 Accesses

  • 10 Citations

Abstract

Recently, the multi-screening of target materials has been made possible by the development of the surface plasmon resonance (SPR) imaging method. To adapt this method to biochemical analysis, the multi-patterning technology of protein microarrays is required. Among the different methods of fabricating protein microarrays, the microfluidic platform was selected due to its various advantages over other techniques. Microfluidic devices were designed and fabricated with polydimethylsiloxane (PDMS) by the replica molding method. These devices were designed to operate using only capillary force, without the need for additional flow control equipment. With these devices, multiple protein-patterned sensor surfaces were made, to support the two-dimensional detection of various protein-protein interactions with SPR. The fabrication technique of protein microarrays can be applied not only to SPR imaging, but also to other biochemical analyses.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    J. E. Anderson, L. L. Hansen, F. C. Moorenb, M. Post, H. Hugc, A. Zuse, and M. Los,Drug Resist. Update,9, 198 (2006).

  2. (2)

    E. P. Diamandis and T. K. Christopoulos,Newyork, NY, Academic Press, New York, NY, 2006.

  3. (3)

    J. Homola, S. S. Yee, and G. Gauglitz,Sensor Actuat. B-Chem.,54, 3 (1999).

  4. (4)

    R. J. Green, R. A. Frazier, K. M. Shakeshe, M. C. Davies, C. J. Roberts, and S. J. B. Tendler,Biomaterials,21, 1823 (2000).

  5. (5)

    Y. Iwasaki, T. Tobita, T. Horiuchi, and M. Seyama,NTT Technical Review,4, 21 (2006).

  6. (6)

    J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. V. Duyne,Nanomedicine,1, 219 (2006).

  7. (7)

    E. Verpoorte,Electrophoresis,23, 677 (2002).

  8. (8)

    P. Mitchell,Nat. Biotechnol.,19, 717 (2001).

  9. (9)

    C. Yi, C. Li, S. Ji, and M. Yang,Anal. Chim. Acta,560, 1 (2006).

  10. (10)

    A. Gerlach, G. Knebel, A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, and Th. Schaller,Microsyst. Technol.,7, 265 (2002).

  11. (11)

    D. D. Cunningham,Analy. Chim. Acta,429, 1 (2001).

  12. (12)

    B. H. Weigl and K. Hedine,American Clinical Laboratory,21, 8 (2002).

  13. (13)

    D. R. Reyes, D. Iossifidis, P. Auroux, and A. Manz,Anal. Chem.,74, 2623 (2002).

  14. (14)

    P. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz,Anal. Chem.,74, 2637 (2002).

  15. (15)

    N. Nguyen and S. T. Wereley,Fundamentals and Applications of Microfluidics, 2nd Ed., Artech House, Norwood, MA, 2006.

  16. (16)

    J. Berthier and P. Silberzan,Microfluidics for Biotechnology, Artech House, Boston, MA, 2006.

  17. (17)

    A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, P. C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, and G. Knebel,Chem. Eng. J.,101, 447 (2004).

  18. (18)

    L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigoc, and H. Beckerc,Lab Chip,2, 1 (2002).

  19. (19)

    C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, and A. Errachid,Microelectronic Engineering,78, 695 (2005).

  20. (20)

    S. Metz, R. Holzer, and P. Renaud,Lab Chip,1, 29 (2001).

  21. (21)

    D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides,Anal. Chem.,70, 4974 (1998).

  22. (22)

    (22) G. Urban, Ed.,BioMEMS, Springer, Dordrecht, Netherlands, 2006.

  23. (23)

    A. R. Wheeler, S. Chah, R. J. Whelan, and R. N. Zare,Sensor Actuat. B-Chem.,98, 208 (2004).

  24. (24)

    V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott,Anal. Chem.,76, 7257 (2004).

  25. (25)

    M. R. Cookson, F. M. Menzies, P. Manning, C. J. Eggett, D. A. Figlewicz, C. J. McNeil, and P. J. Shaw,Amyotroph Lateral Scler Other Motor Neuron Disord.,3, 75 (2002).

  26. (26)

    W. Limbut, S. Loyprasert, C. Thammakhet, P. Thavarungkul, A. Tuantranont, P. Asawatreratanakul, C. Limsakul, B. Wongkittisuksa, and P. Kanatharana,Biosens. Bioelectron.,22, 3064 (2007).

  27. (27)

    A. Al-Chalabi and P. N. Leigh,Curr. Opin. Neurol.,13, 397 (2000).

  28. (28)

    C. L. Shoesmith and M. J. Strong,Can. Fam. Physician,52, 1563 (2006).

  29. (29)

    A. Al-Chalabi and P. N. Leigh,Curr. Opin. Neurol.,13, 397 (2000).

  30. (30)

    J. J. Goto, E. B. Gralla, J. S. Valentine, and D. E. Cabelli,J. Biol. Chem.,273, 30104 (1998).

  31. (31)

    P. J. Schmidt, C. Kunst, and V. C. Culotta,J. Biol. Chem.,275, 33771 (2000).

Download references

Author information

Correspondence to Chee Burm Shin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeon, S., Kim, U.S., Jeon, W. et al. Fabrication of multicomponent protein microarrays with microfluidic devices of poly(dimethylsiloxane). Macromol. Res. 17, 192–196 (2009). https://doi.org/10.1007/BF03218678

Download citation

Keywords

  • protein microarray
  • microfluidic device
  • polydimethylsiloxane